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Neural Correlates of Inaccurate Inference. While our a priori inter-
est was in the neural activity tracking with a perceivers’ accurate
inferences about social targets’ affective states, our data also
allowed for the opposite analysis. By using the relative accuracy
of a perceiver for a given clip as a negative parametric regressor,
we searched for activity tracking with inferential inaccuracy.
This analysis produced 3 clusters of activity (see Table S2), 2
posterior clusters in the parietal and occipital cortex and 1 large
cluster spanning the putamen and subgenual anterior cingulate
cortex (sgACC). This last activation is of special interest, because
these regions (among others) have been shown to track with
many aspects of affective experience, including processing of
reward and negative emotion, and autonomic control (1–3), and
one might speculate that a negative correlation between activity
here and accuracy could indicate that perceivers’ inaccuracy may
reflect their personal emotional reactivity to the stimulus videos,
which could in turn impair their ability to attend to targets’
affective cues.

That said, our a priori hypotheses in this study focused on the
neural correlates of accuracy, not inaccuracy, and specifically
concerned the specific neural systems known to be involved in
MSA and SRs. As we had no specific predictions about the
neural correlates of inaccuracy, we believe these results should
be treated as exploratory, bearing in mind that any explanation
we offer for them is necessarily speculative and post hoc.
However, these findings may be valuable for future studies
directed at further unpacking the cognitive and neural sources of
interpersonal inaccuracy in a more focused manner.

Cross-Subject Coherence in Activation of Networks. Although our
main analysis demonstrated that activity in both MSA- and
SR-related brain regions tracked with interpersonal accuracy, it
is possible that different subjects may have differentially re-
cruited these systems to make accurate inferences. For example,
some perceivers may rely more on sharing affective states with
targets in making inferences, whereas other perceivers may rely
more on cognitive appraisals of target cues.

To explore this possibility, we extracted each participant’s
accuracy-related beta weights from regions of interest pertaining
to both MSA (the rostral and dorsal medial prefrontal cortex and
the superior temporal sulcus) and SR (the right inferior parietal
lobule and intraparietal sulcus, and bilateral premotor cortex).
To quantify how much accuracy tracked with the engagement of
each kind of system, we then averaged each participant’s betas
for the set of MSA regions and the set of SR-related regions. This
allowed us to test 2 possibilities. On one hand, if some partici-
pants rely on MSA-related structures to make accurate judg-
ments, while others depend on SR-related structures, then across
participants we would not expect to observe significant corre-
lations in between accuracy-related activity in these systems. On
the other hand, if participants who engage one set of regions
when making accurate inferences also engage the other set, then
across participants we would expect to observe a significant
correlation between accuracy-related activity in these systems.

The second possibility was borne out by the data: cross-
participant correlation between accuracy-related activity in SR-
and MSA-related regions was 0.57, significant at P � 0.02 (see
Fig. S1). This suggests that MSA and SR-related brain regions
are concurrently engaged to support accurate social inference.

ROIs from Previous Studies. To assess accuracy-related activity in
brain areas previously identified as being involved in MSA and
SRs, we used Pubmed and ISI Web of Knowledge-cited refer-
ence searches to find neuroimaging studies of SRs and MSA
reporting activation in several a priori ROIs.

ROIs related to shared action representations included re-
gions in the mirror neuron system (MNS) and cortical structures
implicated SRs of pain, affective states, and touch. In searching
for MNS activations, we entered the terms ‘‘action’’ AND
‘‘observation’’ AND ‘‘execution’’ AND ‘‘brain’’ OR ‘‘fMRI’’ into
a Pubmed search, and also searched manually for citations in
review papers (4–6), and references citing the first study of
action observation and execution overlapping in the human
MNS (7). MNS activations in the dorsal PMC and IPL were
required to reflect a conjunction of activity elicited by both
observation and execution of actions, including either goal-
directed and intransitive movements or communicative gestures
(i.e., hand signals or facial expressions), compared with control
conditions not including biological motion.

For activations involved in SRs of affect and pain in the AI and
ACC, we entered the terms ‘‘emotion’’ OR ‘‘pain’’ OR ‘‘disgust’’
AND ‘‘observation’’ AND ‘‘experience’’ AND ‘‘brain’’ OR
‘‘fMRI’’ into a Pubmed search, and also searched for studies
citing well-known papers on SRs of pain (8, 9), disgust (10), and
emotional facial expressions (11). Studies were required to
include both the direct experience and observation of a sensory
or emotional state (i.e., pain or disgust) or of posed emotional
facial expressions.

To search for activation in regions thought to underlie SRs of
nonpainful touch (bilateral SII), we entered the terms ‘‘action’’
AND ‘‘observation’’ AND ‘‘execution’’ AND ‘‘brain’’ OR
‘‘fMRI’’ into a Pubmed search and also manually searched for
studies citing 2 well-known papers of SRs of touch (12, 13).

For activations of the MPFC and TPJ related to MSA, we
entered the terms ‘‘social cognition’’ OR ‘‘mental state attribu-
tion’’ OR ‘‘mentalizing’’ AND ‘‘fMRI’’ OR ‘‘brain’’ into a
Pubmed search and also manually searched through reference
sections in several recent reviews of mental state attribution. For
inclusion in subsequent analyses, studies were required to con-
tain an experimental condition in which perceivers made explicit
judgments about targets’ internal states from pictures, cartoons,
or vignettes. Contrasts were included if they compared these
judgments to nonsocial judgments of similar stimuli. To inter-
rogate accuracy-related activity in an area of rostral MPFC
previously associated with MSA, we took advantage of a recent
meta-analysis of BA 10, which aggregated results from 23 studies
(26 contrasts) of ‘‘mentalizing,’’ or MSA (14).

Results from these searches, using these criteria, yielded at
least 2 papers with relevant activation points for each ROI and
an average of 6.18 papers per region.

Euclidian distances of each mean peak coordinate and the
analogous peak from the current results were then calculated
(for listings of studies used for each ROI, mean coordinates for
each ROI gathered from these studies, and calculations of
distance between each ROI taken from previous studies and the
relevant ROI in the current study; see Table S3). Because the AI,
ACC, TPJ, and SII were not found in our whole-brain parametric
analysis (even at a relaxed threshold of P � 0.01, k � 5 voxels),
it was impossible to spatially compare ROIs in those areas
defined from previous studies with these parametric results.

For further analysis, a sphere with a radius of 6 mm was
defined around each peak gathered from previous studies. For
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each ROI, we then extracted beta values from our accuracy-
related analyses for each subject and used 1-sample t tests to
examine whether these beta values were reliably �0; in other
words, we explored whether activity in each MSA and SR-related
ROI culled from previous studies tracked with accuracy. Betas
were averaged over a priori small volumes of interest, and as such

we used a threshold of P � 0.05 to determine significance.
Because we had an a priori hypothesis that activity in MSA and
SR-related regions extracted from previous studies would be
positively, and not negatively, related to accuracy, significance
was determined by using 1-tailed tests. Results of these analyses
are described in Results and Discussion (7–12, 14–45).
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Fig. S1. Scatter plot of between-subject correlations between activity tracking with empathic accuracy in MSA-related brain regions (x axis) and SR-related
regions in the mirror neuron system (y axis).
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Table S1. Brain regions tracking parametrically with empathic accuracy within participants

Region of activation Laterality

Coordinates

T score Volume (vox)x y z

Medial prefrontal cortex M �10 42 48 4.07 29
�4 34 50 3.38

Medial prefrontal cortex R 10 54 14 3.58 22
Frontopolar gyrus R 18 70 10 3.55 27
Dorsal premotor cortex/middle frontal gyrus R 36 8 44 3.81 27

32 18 46 3.3
Dorsal premotor cortex/middle frontal gyrus L �34 8 45 4.25 71
Precentral gyrus L �22 �3 48 4.11 44

30 �28 16 3.85 31
Postcentral gyrus L �24 �38 60 3.36 22
Inferior parietal lobule R 60 �32 38 3.54 21
Inferior parietal lobule R 50 �26 44 3.90 23
Intraparietal sulcus R 30 �34 48 3.54 34

36 �30 44 3.12
Superior temporal sulcus R 52 �10 �18 3.45 28
Middle occipital L �48 �76 12 4.36 35

Coordinates are in Montreal Neurological Institute (MNI) space. Local maxima are presented below main activation peaks. Voxels are 3 � 3 � 3 mm.
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Table S2. Regions tracking parametrically with empathic inaccuracy within participants

Region of activation Laterality

Coordinates

T score Volume (vox)x y z

Putamen/sgACC R 16 20 �10 4.44 167
26 20 �4 4.34
16 8 �8 4.01

Posterior parietal cortex R 54 �64 14 4.46 29
Dorsal occipital cortex R 32 �76 24 4.15 27

Coordinates are in MNI space. Local maxima are presented below main activation peaks.
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Table S3. Foci derived from previous studies used for the ROI analysis in the present study

Region Studies used Laterality

Coordinates
(previous) Coordinates (current)

Distance†

Accuracy-related
parameter
estimates

x y z x y z t p

Accuracy related
vMPFC 14* M 8 53 10 12 53 10 4.33 2.77 � 0.01
dMPFC 15–24 M 0 36 46 �4 34 50 4.24 2.51 0.01
PMC 25–27, 35–38 R 42 0 46 36 8 44 10.20 3.13 0.04
PMC 25–27, 35–38 L �38 0 45 �34 10 45 10.77 2.79 � 0.01
IPL 7, 25–27, 36–37, 39–40 R 47 �38 40 50 �26 44 13.00 2.56 0.01

Nonaccuracy related
AI 8–9, 11, 26, 28–30, 41 R 37 18 0 N/A N/A �0.93 0.18
AI 8–9, 11, 26, 28–29, 39 L �37 17 2 N/A N/A �0.80 0.22
ACC 8–10, 29–30, 44 M 4 17 32 N/A N/A 0.20 0.43
TPJ 20, 31–32, 34 R 54 �54 21 N/A N/A �1.08 0.14
TPJ 20, 31–34, 45 L �52 �59 21 N/A N/A �1.39 0.10
SII 42–43 R 59 �22 26 N/A N/A 0.83 0.21
SII 12, 42 L �59 �23 29 N/A N/A �0.85 0.20

Coordinates are in MNI space and represent the mean of foci reported in the studies listed.
*From a meta-analysis.
†Distance in mm from the similar activation focus identified in the whole-brain parametric analysis [listed in the Coordinates (current) column].
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