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Abstract 
Our ability to shift from one emotion to the next allows us to adapt our behaviors to a 
constantly-changing and often uncertain environment. Although previous studies have 
identified cortical and subcortical regions involved in affective responding, no studies have 
asked whether and how these regions track and represent transitions between different 
emotional states and modulate their responses based on the recent emotional context. To 
this end, we commissioned new musical pieces designed to systematically move participants 
through different emotional states during fMRI. Using a combination of data-driven (Hidden 
Markov Modeling) and hypothesis-driven methods, we show that spatiotemporal patterns of 
activation along the temporoparietal axis reflect transitions between music-evoked emotions. 
Furthermore, self-reported emotions and the subsequent neural response patterns were 
sensitive to the emotional context in which the music was heard. The findings highlight the 
role of temporal and parietal brain regions in not only processing low-level auditory signals, 
but in linking changes in these signals with our on-going, contextually-dependent emotional 
responses.    
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Introduction 
At the heart of the word “emotion” lies the Latin word movere, meaning to ‘move’. When we 
suddenly erupt with anger or are swept away by tears, it’s easy to understand the kinetic 
origins of emotion. Furthermore, our ability to flexibly shift from one emotional state to the 
next when the situation requires it is important for successful social functioning and well-
being. Think, for a second, of the social ramifications of not being able to transition from 
feeling of fear to elation when arriving at a surprise party. And when we do shift to elation, 
that positive feeling might be experienced quite differently than if we had previously been 
calmly waiting for friends to arrive rather than startled by friends in the dark. Experimental 
evidence has confirmed that, in daily life, our emotions reliably transition from one state into 
another and that these transitions, as well as our predictions for when these transitions might 
occur, inform our social behavior1,2.  To date, however, little is known about the neural 
systems tracking and representing these transitions and the influence of prior emotional 
contexts.  The present paper seeks to address this issue using a combination of fMRI and 
novel behavioral methods, including the use of music stimuli specifically created for this 
purpose.    

Despite growing behavioral evidence that emotions are dynamic, transitory and situated 
within a temporal and social context3, historically, most neuroimaging studies of emotion 
have presented participants with static images selected because they elicit specific affective 
reactions, with analyses seeking to identify the distinct neural bases of different response 
types  rather than understanding transitions between states or the dynamics of emotional 
responding more generally. While this approach allows for a high degree of experimental 
control and has conferred new insights into the ways in which the brain processes and 
represents emotion eliciting stimuli4,5, it is less ideal for studying the dynamic changes in 
states over a longer period of time6. Some fMRI studies have used dynamically changing 
stimuli, such as film clips,  to ask how the strength of a given affective  state varies in 
concordance with BOLD signals over time7–9. These univariate approaches have shown that 
various prefrontal and subcortical regions of the brain track the rise and fall of a given 
emotional state in response to a stimulus (e.g. a film clip) along a prescribed affective 
continuum (from good to bad or happy to sad). However, they cannot tell us how our brains 
enable transitions between qualitatively different states nor how one’s recent history of 
experiencing different states might influence brain functioning. Large-scale behavioral 
studies have confirmed that the experience of emotion is highly complex and may be best 
described as a multi-dimensional space10,11.  A recent study used a data-driven approach to 
identify distinct neural states that corresponded to emotional responses, but characterized 
only two broad emotional states and did not assess how state transitions could influence 
emotional experience12. There is therefore a gap between our study of emotions in the lab 
and the way in which we experience emotions in everyday life, where affective-related 
information is changing continuously depending on the socioemotional context. 

To more reliability and rigorously investigate dynamic transitions between emotional states, 
unconfounded by other variables like language, we developed a novel musical stimuli set 
systematically designed to induce a variety of emotional reactions at specific timepoints. For 
the purposes of studying affective dynamics, music is an ideal stimulus to use in that it is 
temporal by nature and can reliably express and elicit a range of emotions without 
language13. Despite these methodological advantages, a recent meta-analysis of functional 
fMRI studies with dynamic and continuously presented stimuli (films, music, speech, video 
games, etc) found that only 13% of included studies used purely auditory stimuli that did not 
contain visuals or language14. Therefore, it is difficult to determine from these results – or 
from the vast majority of neuroimaging studies that elicit emotions with visual stimuli – if and 
how regions in the brain involved in emotional responding are engaged by stimuli whose 
affect-eliciting properties are abstract and not confounded by changes in language. Knowing 
this is important not only for assessing the generalizability of our current brain models of 
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emotions, but is relevant for clinical disorders associated with aberrations in non-verbal 
emotional understanding15. 

To create this dynamic stimulus set, film score composers were hired to write two pieces of 
polyphonic, non-lyrical music that convey and transition between 5 pre-defined emotional 
categories (herein called events). Each piece contained 2-4 events from each emotional 
category that were musical distinct. Importantly, however, overall instrumentation, tempo, 
duration and number of transitions were kept constant throughout both pieces. In this way, 
we could control both the timing of emotional transitions as well as the lower-level acoustic 
elements that drive these changes. Unlike with previous naturalistic neuroimaging studies 
that have used pre-existing stimuli, having this degree of control allowed us to more 
effectively tease apart the different features of the stimulus that are potentially driving the 
emotional experience and the subsequent brain activation patterns. By commissioning a 
completely new piece of music, we could additionally minimize the potential confounding 
effects of familiarity and language and utilize instrumentation and tempos that were most 
conducive for listening during MRI scanning. While a purely objective “ground truth” may 
never be realized when it comes to emotions, having access to both the intentions of the 
composer as well as how listeners perceive, appraise and respond to the music affords us 
more certainty in knowing which emotions we are studying.   

A final advantage of designing a novel stimulus set is that we could systematically 
manipulate the context in which each event was heard, in order to test the lasting influence 
of an emotional state on the experience and representation of subsequent states. Previous 
studies have shown how exposure to an emotional stimulus can bias the way in which new 
and distinctive information is experienced, learned, and remembered16. Using fMRI, it has 
been shown that the established emotional context in which an event was first encountered 
influences the neural representation and reactivation of that event17,18, particularly in 
subcortical regions such as the amygdala and hippocampus, as well as cortical regions such 
as the prefrontal cortex and inferior temporal cortex. When designing the musical stimuli, the 
composers wrote two versions of each piece, which consisted of the same segments of 
emotional music arranged in two different ways. We specifically optimized the order so that 
each event was preceded by a different emotion in each piece. In this way, we can assess 
how the surrounding context in which an emotional, musical-event is encountered influences 
how it is experienced and represented in the brain. 

Using this novel musical stimulus, fMRI, and a combination of hypothesis-driven and data-
driven statistical approaches, we addressed two main research questions. First, we asked 
which brain regions track emotional state transitions in response to music. For this, we 
compared voxel pattern stability within vs. across emotional events (hypothesis-driven) and 
used Hidden Markov models (HMMs) to probabilistically identify brain state transitions (data-
driven) without using any timing information about the stimulus itself19. In conjunction with 
dynamic stimuli, HMM-defined shifts in the activity patterns within cortical brain structures 
(e.g. posterior medial cortex, tempoparietal junction, angular gyrus and inferior frontal cortex, 
and tempoparietal axis) have been shown to reflect both high level and low-level changes in 
narrative16 and musical structure 20–22 . Based on these previous findings, we hypothesized 
that several subcortical (amygdala, putamen, pallidum, and caudate), medial cortical 
(dorsomedial [DMPFC] and ventromedial prefrontal cortex [VMPFC], and anterior cingulate 
cortex [ACC]), and temporal lobe (insula, superior temporal sulcus, and PHG) brain regions 
will show time-varying activation patterns that map onto emotional events in the music.  

As part of this first research question, we then further clarify the experiences that might be 
driving brain state transitions in response to the music. Encoding models were trained to 
predict fMRI signal based on a weighted combination of musical and acoustical features 
alone or with the addition of self-reported affective changes in response to the music23–25. 
We predicted that fMRI signal in the VMPFC/OFC, insula and subcortical regions would be 
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better predicted by models that include subjective emotion ratings, in addition to lower level 
musical/acoustic features.  

Second, we asked how the recent emotional context influenced event representations and 
dynamics. Here, we measured systematic differences in spatial brain patterns associated 
with an emotional event when it was preceded by different emotional states. Previous 
studies have used such an approach to show that semantic context and narrative framing 
can modulate our neural representations of the same stimulus26,27.. Finally, we tested if the 
temporal patterns of brain-state transitions are influenced by the nature of the preceding 
emotion, using state probability metrics derived from HMMs28. We hypothesize that regions 
that are sensitive to emotional transitions in the music will demonstrate faster event 
transitions when the preceding event was of the same valence. Furthermore, we predict that 
these regions will show systematic alterations in spatial patterns based on the emotional 
context in which the same emotional event is heard.  

Results 

Which brain regions track transitions from one emotional state to another?  
 
During fMRI, 38 participants passively listened to two full-length pieces of music (~30 
minutes): one version of piece A and one version of piece B, each of which featured 16 
emotional events (see Methods and Fig. 1). In between the two music-listening sessions, 
participants watched a ~12.5-minute audio-visual movie which was used for functional 
alignment29. All results presented below are in shared response space unless otherwise 
noted.  

 

Joyful

Anxious

Sad

Calm
PA5 NA5 NA6 PA6 PA7 NA7 NA8 PA8

ST ST

DT DT

ST

DT DT

PA1 PA2 NA1 NA2 PA3PA4 NA3 NA4

ST ST ST ST

DT DT DT

PA6 PA8 NA6 NA8 PA5 NA5 NA7 PA7

DT DT

ST ST

DT

ST ST

PA4 NA2 NA1 PA3 PA1 NA4 NA3 PA2

DT DT DT DT

ST ST ST

Piece A version 1

Piece A version 2

Piece B version 1

Piece B version 2

~15min

Time

event 21
…

event 10 event 18 event 2
… …

c

Vividness?

Intense?

Surprised?

Enjoy?

b

a

Music listening Movie watching Music listening

~15min ~15min

T1



 

6 
 

Fig 1. Stimuli and study design. A) Schematic illustration of the two novel musical compositions. 
Each piece has 16 unique emotional events and two versions. Each version has the same events but 
in a different order to counterbalance  B) Design of the fMRI scanning session in which participants 
listened to one version of Piece A and B (version randomly selected and counterbalanced across 
participants). C) Post-scanning recall measures. PA = positive affect, NA = negative affect, PP = 
positive valence to positive valence emotion transition; ST = same valence transition; Dt = different 
valence transition.  
 
Hypothesis-driven approach: within vs. across event temporal correlation results  
If a brain region is sensitive to emotional transitions, then we would expect that the brain 
patterns at timepoints within a particular emotional event should look more similar than brain 
patterns at timepoints that cross emotional event boundaries. To this end, for each 
searchlight on the cortical surface of the brain, as well as 11 subcortical ROIs, we computed 
correlations between all pairs of timepoints (using the functionally-aligned feature space 
derived through hyperalignment). We then computed the average correlation for timepoint 
pairs that were within an emotional event (as defined by the composers) and for pairs that 
spanned two adjacent events (i.e. across event t and an adjacent event t + 1). The 
difference between the within event correlation and the across adjacent event correlation 
indicates the extent to which a brain region’s activation pattern shifted at event transitions. 
Regions that showed significantly higher correlations between time points within an emotion 
vs. across emotional boundaries included the bilateral auditory cortex, superior temporal and 
middle temporal gyrus, and temporal pole as well as the left supramarginal gyrus and 
angular gyrus (Fig. 2B). 
 

 
 
Fig 2. Brain regions sensitive to emotion transitions. A. Schematic of hypothesis-driven analysis 
for brain regions sensitive to emotion transitions by comparing within event vs. across event temporal 
correlations. B. Brain regions in which timepoint-by-timepoint correlations were significantly greater 
within a composer-defined emotional event as compared to across emotional events. C. Brain regions 
that show shifts at emotion transitions after acoustic features are regressed out. Colors correspond to 
z-scores across the cortical surface, relative to a null distribution (cluster-corrected p value < 0.05).  
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Data-driven approach: HMM brain state transition results 
HMMs can model sequences in brain patterns by assuming that states are characterized by 
periods in which brain activity patterns remain stable over time. HMMs have been used 
previously with neuroimaging data to show that our brains naturally transition between 
several different mental states that are similar across people, are spatially distinct, and are 
temporally ordered19. Here, we use this approach to uncover brain states that reflect emotion 
states induced by the music. 

For each searchlight/ROI, an HMM-based event segmentation model was applied to brain 
data averaged across all participants. The number of events imputed into each HMM was 
set to the number of emotional transitions defined by the composers (16 for each piece). 
After fitting the HMM, we calculated the state entropy for each TR, which tells us the degree 
of certainty in the model of a transition at that moment in time.  Finally, we averaged all 
entropy values that corresponded to  the composer-defined musical transition timepoints and 
determined if these values were greater than what would have been expected by chance 
through permutation testing.  
 
We found that likelihood of a brain-state transition was significantly greater than chance at 
composer-defined transitions in the bilateral auditory cortex, including the superior temporal 
and middle temporal gyrus, extending posteriorly into the left supramarginal gyrus and 
angular gyrus, and dorsally into the inferior parietal lobule and TPJ (Fig. 3B).  
 
The right hippocampus also showed higher entropy at composer-defined musical 
boundaries, though this effect did not survive correction for multiple comparisons across the 
11 subcortical ROIs (z-stat  = 2.39, puncorr = 0.008).  
 
Results when regressing out acoustic features  
The two analyses presented above were repeated on data with acoustic features of the 
music pieces regressed out of the SRM feature space data first using the residuals from a 
linear regression model. These musical features are the same as those used in the encoding 
models and include information related to dynamics (rms), articulation (attack log), timbre 
(chroma centroid) and harmony. The hypothesis-driven largely mirrored the original findings 
and varied only in that the extent of the significant results in the temporoparietal cortex (see 
Fig 2C). Specifically, the right temporal pole and bilateral middle temporal gyrus no longer 
showed greater within-event vs across event temporal correlations. Furthermore, matches 
between HMM-defined brain state transitions and composer-defined emotion transitions 
were no longer significant in any part of the right hemisphere axis after acoustic features 
were regressed out of brain signal and were no longer significant in the left temporal pole 
and middle temporal gyrus (see Fig 3C).  
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Fig 3. Brain-state changes driven by emotion transitions. A. Schematic of data-driven analysis for 
brain regions sensitive to emotion transitions using HMMs. B. Brain regions in which HMM-defined 
brain state transitions showed a significant match with composer-defined emotion transitions. C. Brain 
regions that are sensitive to emotion transitions after acoustic features are regressed out. Colors 
correspond to z-scores across the cortical surface, relative to a null distribution  (cluster-corrected p 
value < 0.05).  
 
 

Do emotional features significantly predict time-varying activation patterns over and 
above acoustic features of the music?  
To answer this question we constructed an encoding model, an approach in which stimulus 
features are used to predict BOLD signals. Measuring the relative performance of models 
that use different kinds of information about the stimulus can provide insight into the specific 
stimulus dimensions that drive neural activity in a brain region23,24. Here, we used this 
approach to determine if adding information about emotion ratings provides better prediction 
of BOLD signals, compared to a baseline model that uses only acoustic features of the 
music.  

After scanning, participants listened to short excerpts extracted from each of the emotional 
events they heard during scanning and were asked to provide retrospective subjective 
ratings of how they felt the first time they heard to this moment within the piece. Specifically, 
they rated how happy, sad, anxious, calm, nostalgic, and surprised they felt as well as how 
much they enjoyed and how vividly they remembered this moment. Two separate 
regularized (ridge) regression models were employed to predict brain signal within a 
searchlight/ROI for each participant. One model included regressors for event-level 
musical/acoustic features, i.e. changes in tempo, dynamics, modality, timbre, and articulation 
across events. Another model included these same musical/acoustic features plus the 8 
subject-specific emotional ratings collected post-scanning. We then identified regions that 
showed significantly greater correlations between predicted and actual signal in the full 
model as compared to the model with acoustic/musical features only.  
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We found that the full model with emotion features better predicted signal during music 
listening in vertices within the left ventromedial prefrontal cortex, left postcentral gyrus, and 
left visual cortex (Fig. 4).    
 

Fig 4. Brain activation patterns predicted by emotion vs. acoustic features. A) Schematic of the 
two encoding models and their comparison. B) Brain regions in which an encoding model with 
acoustic + emotion features showed greater correlation between predicted and actual brain signal as 
compared to the encoding model that contained only acoustic features. Colors correspond to 
differences in average r-values between the full (acoustic + emotion) model and the lower model 
(acoustic features only),  and were cluster-size corrected at p < 0.05.  
 

How do brain states and their transitions vary as a function of the recent 
emotional context?  
 
Systematic changes in behavioral ratings based on emotional context 
We first assessed the degree to which emotion ratings of the music from the behavioral 
study varied as a function of condition, i.e. does how we report our emotions to a particular 
piece of music vary based on emotion that came before it. Specifically, for each music clip, 
we calculated the correlations between the post-behavioral test retrospective ratings for 
pairs of participants who heard that clip within the same condition (both version 1) as well as 
across conditions (one heard it in version 1 and another in version 2) and calculated 
differences in the mean of the within-condition pairwise correlations and the across-condition 
pairwise correlations. Across all clips, the within-condition correlation was significantly 
greater than the across-condition correlations (M within  = 0.303, M across = 0.265, z-stat of 
difference = 2.0, p-value = 0.042), suggesting that subjective multivariate emotion ratings 
were systematically influenced by the prior emotional state. When averaging across 
emotional label, the calm and sad clips varied the most by context (Within rhappy = 0.37, 
Across rhappy = 0.35; Within rsad = 0.20, Across rsad = 0.15; Within rcalm = 0.19, Across rcalm = 
0.15; Within ranxious = 0.50, Across ranxious = 0.48). 
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In addition to the overall ratings of each event, we tested if the context manipulation 
influenced the time it took for participants to recognize and report feeling the intended 
emotion of each clip. For this analysis, we determined the time-to-peak for each event, 
operationalized as the moment when the number of participants who turned on the intended 
emotion for this event reached 90% of its maximum. The time to peak for positive events that 
were preceded by positive emotions was 9s faster than positive events preceded by 
negative events, which was determined to be statistically significant (z-stat = 1.99, p-value = 
0.02). Negative events preceded by negative events were on average 2.3s faster to reach a 
peak in ratings than negative events preceded by positive events, a difference that was not 
statistically significant (z-stat = 0.49, p-value = 0.31).  
 
Systematic changes in spatial brain patterns of emotional events based on emotional 
context 
For each searchlight/ROI, we computed the average response pattern within each of the 35 
events for each participant, and then calculated the correlations between participants for 
each event. We again binned these correlations based on whether the pair of participants 
heard that particular event within the same condition (both in piece A version 1, for example) 
or in different contexts (one in piece A version 1 and one in piece A version 2). We next 
tested which brain regions show significantly greater same-context pairwise correlations as 
compared to different-context pairwise correlations.  

Significant differences in the spatial patterns averaged over emotional events that varied in 
the context were found bilaterally in the temporal lobe, including the primary and secondary 
auditory cortex (superior temporal gyrus) as well as the right anterior temporal lobe. 
Systematic changes were also shown in the right precentral gyrus and sulcus (Fig. 5).  

To avoid the possibility that differences were an artifact of fMRI signal spilling over from the 
event before (arbitrarily resulting in pairs of participants who heard the piece in the same 
context appearing to have activation patterns more similar due to the signal coming from the 
previous event), the analysis was run using only data averaged across the second half of 
each event; that is, not including any data that was temporally close to an emotion 
boundary/transition. The results were largely the same (see Fig. S2), suggesting that brain 
representation of emotions in the auditory cortex are sensitive to the emotional history in 
which the stimulus is encountered.  
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Fig 5. Context-based changes in spatial brain patterns. A) Schematic of pattern similarity analysis 
used to identify regions that show systematic differences in representation of emotional events based 
on condition (heard in the same piece vs. across pieces). B) Brain regions in which spatial patterns 
were significantly more similar in pairs of participants who heard the emotional event in the same 
condition (all in piece A or B, within group) as compared to pairs of participants who heard the music 
in different conditions (one in piece A other in B, across group). Colors correspond to z-stats of the 
ratio of across group vs. within group correlations as compared to a null model in which group 
membership was randomly permuted. Resulting statistical maps were cluster-corrected at p value < 
0.05.  
 
 
Systematic shifts in timing of emotion transitions based on emotional context.  
A measure of the “speed” of the transition from one emotional event to the next was 
calculated from the output of HMM models, fit to group-average data within a particular 
searchlight/ROI for two sequential emotional events at a time 30. We then calculated the 
difference in event transition timing for transitions with a valence shift(negative to positive or 
positive to negative) vs. emotional transitions within the same valence (positive to positive or 
negative to negative).  

Significantly earlier (arriving to the next state earlier) transitions from same-valence contexts 
as compared to different-valence contexts were found in surface vertices corresponding to 
the right auditory cortex (including the superior temporal gyrus) and the left superior frontal 
gyrus (Fig. 6).    

 

z-stat

b

a

Piece A

r(within piece) > r(across pieces)

Within 
correlations

Event X

Event X

Within 
correlations

Across 
correlations

Subji Subjj

Subjx Subjy

Across 
correlations

Piece B

Average Spatial Pattern, Event X

z-stat



 

12 
 

 

Fig 6. Context-based changes in temporal brain patterns. A) Schematic of temporal analysis with 
HMMs to identify how changes to the preceding emotional state altered the speed of the transition to 
the current state, separately for positive valence and negative emotional events. B) Brain regions in 
which HMM-defined transitions were significanty earlier when the event was preceded by the same 
valence as compared to a different valence. Colors correspond to the difference in seconds between 
same valence emotion transitions as compared to different valence transitions (same > different 
greater than), thresholded based on one-sample t-tests and cluster-size at p value < 0.05.  
 

Discussion 
Emotions are dynamic by nature, reacting to our ever-changing environment in order to 
motivate adaptive behaviors. In order to more rigorously assess how our brains process 
emotional fluctuations and transitions, we developed novel musical stimuli that reliably 
induced various emotional states without visual and linguistic information that could 
confound with emotional information. We then tested if spatial and temporal brain patterns 
reflect emotion transitions evoked by music as well as how these transitions are altered by 
the emotional context in which the music is heard. We found evidence that several regions in 
the temporal and parietal lobes of the brain, including primarily sensory regions like the 
auditory cortex, show shifts in brain activation patterns that correspond to transitions 
between music-evoked emotional states. Furthermore, these patterns were systematically 
modulated by what emotional state preceded it. These results extend the role of the 
temporal-parietal axis as not only processing long-term narrative31 and musical structure20,21 
as well as discrete musical-evoked32 and vocal emotions33, but high-level, contextually-
dependent information regarding multidimensional emotion dynamics and their transitions.  

Using a hypothesis-driven approach, we found that brain state transitions in voxels in the 
temporal lobe aligned with composer-defined emotion transitions. In combination with a 
data-driven analysis, we determined that emotion dynamics not only contribute to brain-state 
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patterns in these regions, but are one of the primary drivers of brain responses to music. 
Previous research has shown that the temporal lobe plays an active role in both emotion 
perception and induction, in addition to processing of lower level perceptual aspects of 
sound32. Emotional labels associated with both musical and vocal sounds could be reliably 
decoded from voxels with the primary and secondary auditory cortex, suggesting that these 
regions represent the emotional content of sounds, independent of their specific acoustic 
properties33. Here, we extend these findings by showing that multivariate signals within the 
auditory cortex fluctuate between different stable states and that these state transitions are 
more likely to occur at moments when our emotional states also change. Importantly, 
Importantly, when acoustic features extracted from the music were regressed out of brain 
signal, the auditory cortex and superior temporal gyrus, except for the right auditory cortex in 
the case of data-driven results, continued to represent emotional changes in the music, 
suggesting that, at least in the left hemisphere, acoustic changes were not the soul driver of 
the time-varying patterns associated with emotional transitions.  

Previous research has also highlighted the role of the temporoparietal axis, including the 
angular gyrus and TPJ, in representing temporal structure of music20,21 and narratives31, with 
short to long term information being represented hierarchically along the axis. However, it is 
unclear from these previous studies the nature of the temporal information that is being 
tracked. Our results argue that emotional changes are an essential signal for the brain when 
segmenting our continuous experiences. The superior temporal sulcus in particular has been 
theorized to track socially and emotionally relevant information over time 31,34,35. Here, we 
provide evidence for this theory by showing that emotional structure is one of the main 
organizing principles by which the superior temporal sulcus parses longer temporal 
experience.  

To determine the degree to which changes in subjective emotional experiences is the main 
driver of fluctuations in the brain state patterns described above, we additionally ran 
encoding models to predict brain signals during music listening from a set of both subjective 
and musical features. While acoustic and musical changes in the music could reliably predict 
auditory signal, a model that included emotion features as well performed no better in 
auditory cortex, suggesting that the time-varying patterns that are sensitive to the composer-
defined emotion transitions are most related to musical and acoustic changes in the music. 
Given the known role of temporal lobe regions for processing acoustical aspects of music36 
and that it is not possible to completely dissociate musical changes from emotional changes, 
it is not too surprising that subjective emotional features add little to the model. However, the 
fact that several regions in the temporal lobe still reflect emotion transitions after acoustic 
data is regressed out from the signal suggests that the emotional content is still an important 
element in driving brain state changes in these regions.  

Interestly, regions in which encoding models that included subjective feelings outperformed 
a more basic model with only acoustic features included left ventromedial prefrontal cortex, 
left postcentral gyrus, and visual cortex. The role of the ventromedial prefrontal cortex in 
affective experiences has been well documented37,38 and recently it was shown that brain 
states in the VMPFC align across participants during emotionally salient scenes of a popular 
TV show12. These results suggest that the VMPC has a very active role conferring our 
ongoing external experiences with affective meaning. This is in line with additional research 
showing that functional connectivity between the VMPFC and other brain areas changes 
during music-listening that is particularly emotional39 or particularly rewarding40, suggesting 
its role as a modulator/computational hub/gate-keeper for coordinating emotion responses 
and with perception of music.  

The involvement of the postcentral gyrus and visual cortex in processing emotional changes 
to music is more surprising. The fact that subjective emotion features were better predictors 
of V1 activity could be due to mental imagery involved in music-listening, which enhanced 
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the emotional experience. This hypothesis seems more likely when considering that the 
composers who wrote our musical stimuli were all trained in film scoring, which is designed 
to accompany and enhance visual images. Previous studies have shown increased V1 
activity and/or connectivity during music listening that is particularly emotional39,41 as well as 
in listeners that are more empathic, and therefore more likely to experience strong emotions 
to music39,41. It may well be that experiencing vivid visual images during music listening 
allows for stronger empathic connections to the composer, characters, or events of the 
music, which, in turn, fosters more powerful emotional responses. Given that the full feature 
encoding model included self-report ratings of vividness as well as emotional intensity, and 
that post-scanning ratings of vividness were correlated with ratings of emotional intensity, it 
could be that dynamic patterns in the visual cortex that our model is able to predict reflect 
more vivid mental imagery that coincide with more intense feelings.  

Not only did patterns of brain activity along the temporal parietal axis represent emotion 
transitions, spatial patterns during emotional events within these regions were sensitive to 
the emotional context in which the music was heard. Specifically, spatial correlations 
(averaged across emotional event lengths) in the temporal lobe were significantly more 
similar in pairs of participants who heard that emotional event with the same prior context as 
compared to pairs of participants who heard that emotional event with different prior 
contexts. This suggests that, contrary to previous research limiting its role to the processing 
of local, lower-level, shorter-timescale features of musical structure, the auditory cortex is 
sensitive to the previously-established context in which music is heard. While it is possible 
that this increased similarity is an artifact as a result of fMRI-signal spilling over from the 
event before (which would make pairs of participants who heard the piece in the same 
context look more similar because the previous event was also the same), we re-ran the 
analysis using only data averaged across the second half of each event, that is, not including 
any data that was temporally close to an emotion boundary/transition. The results in the 
temporal lobe were largely the same, suggesting that the representation of musical-evoked 
emotions in the auditory cortex is sensitive to the context in which the music is encountered. 
Future research will be needed to determine the exact timescale on which preceding context 
influences auditory representations of music.   

Interestingly, in addition to this change in representation, the right superior temporal lobe 
also showed a temporal effect of context. Specifically, the timing of brain-state transitions 
between emotional events in these regions varied as a function of the valence of the 
preceding event. Behavioral evidence indicated that the time until which most participants 
agreed that a musical event made them feel a particular emotion varied depending on what 
type of musical emotion came before. Specifically, people were more likely to feel positive 
emotions when the preceding event was also positive (joyful and calm vs. sad/anxious). This 
pattern was also reflected in the timing of HMM-defined brain state transitions in the auditory 
cortex, since the model detected transitions earlier in time when the valence of the preceding 
event was the same as the current event. While previous studies using similar approaches 
have shown how repeated viewing of a movie30 and aging28 can temporarily shift activity 
patterns in a way that reflects changes to our subjective experiences, this is the first study, to 
our knowledge, to show that changes in our subjective experience of a piece of music can 
alter brain representations of the associated emotion.  

Despite our initial hypothesis, subcortical areas of the brain that have been reliably shown to 
respond during emotion processing (e.g. amygdala, thalamus, hypothalamus, caudate, 
striatum) did not show time-varying brain patterns that reflected music-evoked emotion 
dynamics. While changes in these regions appear to be reliably predicted by emotional 
responses evoked by short videos23 and in some studies that used music designed to induce 
emotions32,42, other recent evidence found that not all limbic regions reliably represent 
music-induced emotions43 or were activated as strongly as by other rewarding stimuli 44. 
Furthermore, the majority of studies finding significant activation of subcortical regions 
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corresponding to music-evoked emotions averaged signal over the duration of the piece and 
compared this average signal to some control condition (scrambled music, sine tones, 
silence, or music designed to convey another emotion). It is therefore possible that 
increased signal in these regions is a reflection of an overall affective response, but that they 
do not show the types of patterns that our analyses are designed to pick up in these 
analyses, i.e. stable patterns within an emotional event followed by rapid shifting to a new 
stable patterns. Further work will be needed to determine whether dynamic emotional 
experiences evoke different kinds of dynamics in subcortical areas, such as transitory 
responses at boundaries or ramping activity throughout events17,45.  

This study has several limitations that are important to address. First of all, due to the 
limitations of  statistical power, we could not assess whether emotional changes of a certain 
type (a positive valence emotion to a negative valence emotion, or a high arousal emotion to 
a low arousal emotion) were the main drivers of brain transitions. Previous research has 
suggested that changes in context elicit changes in arousal, which segment our memories 
into separable events46. It could be that specific “types” of emotion transitions (e.g. negative 
to positive state) or only more salient/arousing transitions are driving the event patterns in 
different ways, though given the limited number of each type in our stimulus, it was not 
possible to test the quality of the event transition that may be driving the brain-state 
changes. Finally, most of the analyses presented here focus on group-level statistics, though 
it is possible that emotion dynamics are not stable or consistent across participants. 
Capturing these individual differences is beyond the scope of this paper, and could account 
for why traditional emotion regions did not emerge in these analyses. Follow-up 
investigations will try to assess individual differences in emotional experiences to music 
using within-subject analyses and richer self-report measures.  

In sum, using novel music composed specifically for the purposes of driving listeners through 
different emotional states in an optimized period of time, we show that regions along the 
temporoparietal axis show spatiotemporal patterns that reflect the changing emotional 
experiences to music. Specifically, we found stable brain patterns within the primary auditory 
cortex, superior temporal gyrus and sulcus during an emotional event that rapidly shifted to a 
new stable pattern during emotion transition periods in the music. Activation in these regions 
also showed altered spatial and temporal patterns to the same pieces of music that were 
heard in different emotional contexts. The findings suggest a role of the temporoparietal axis 
in integrating changing acoustic input with our changing internal states, highlighting a 
potential mechanism by which our emotions fluctuate in everyday life and treatment target 
for when such fluctuations go awry in the case of mental illness.  

Methods 

Ethics information 
This study was conducted under an approved study protocol reviewed by the Columbia 
University Institutional Review Board (IRB AAAS0252). Informed consent was obtained from 
all human participants. Participants received monetary compensation ($20/hour) for their 
time.  

Stimuli development and behavioral validation 

To develop non-linguistic emotional stimuli suitable for fMRI, we hired three film score 
composers, all graduate students at New York University’s Film Composition program, to 
write two original pieces of music. The composers were asked to divide the pieces into 
sections, where each section conveyed a single emotional category. Emotional categories 
were selected based on dimensions identified from a large, cross-cultural musical corpus in 
which people reported both dimensional and categorical emotional responses47. After 
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discussion with the composers regarding what was feasible given the musical constraints, 
we arrived at five distinct emotional categories: sad/depressing, anxious/tense, 
calm/relaxing, joyous/cheerful, and dreamy/nostalgic. We also asked that each emotional 
category be revisited 7 times across the two pieces, using different musical elements during 
each recapitulation. The length of each section and the timing of the transition from one 
emotion to another we left up to the composer, though we asked that each section be no 
less than 30s. Additionally, the tempo was set to be the same as (or a multiple of) the fMRI 
pulse sequence (80/160 BPMs) and composers were instructed to use up to four separate 
voicings/instruments (violin, piano, guitar, cello).  

Importantly, the composers were able to write these musical events modularly, so that the 
ordering could be shuffled without disturbing the natural flow of the overall piece. This 
allowed us to manipulate emotional context in a systematic way. Specifically, 32 events were 
divided into two distinct musical pieces (A and B), each with 16 unique musical events (4 
emotions x 3-4 examples, ~15min in length). Musical interludes (4-12s) were written by the 
composers and inserted in between event transitions to musically link one event to another 
and to allow the piece to sound like a cohesive whole when played continuously. While the 
ordering of the specific events was left up to the composers, the pieces were constructed to 
ensure that the number of events preceded by an exemplar of the same valence (joyful and 
calm considered positive and sad and anxious considered negative) was equal to the 
number of events preceded by an exemplar of a contrasting valence (see Fig. 1A). Given 
that nostalgia is considered a mixed emotional state with both positive and negative aspects 
48, we did not have specific hypotheses about its effect on subsequent emotional events and 
therefore only included 4 of the dreamy/nostalgia clips, one at the beginning and end of each 
piece. This resulted in 14 emotion transitions of the same valence (positive to positive or 
negative to negative) and 14 emotion transitions of contrasting valence (positive to negative 
or negative to positive) across the two pieces (7 of each type in each piece). From this initial 
set of two pieces, the composers created an alternative version of each, using the same 
events, but re-ordered them so that any event that was previously preceded by a contrasting 
valence emotion was now preceded by a same valence emotion, and vice versa. For a list of 
all events and their lengths, see the supplementary materials. All audio files are made 
available to reviewers on OSF 
(https://osf.io/a57wu/?view_only=996150c5d6fc49c1a004c78ef2f852d3).  

Several additional audio engineering changes were made to the stimuli to increase their 
suitability for MRI. The frequency of the repeating sounds of our particular SEIMENS MRI 
machine corresponded to a C note. Therefore, all of the music was transposed to the key of 
C, a pitch shift of a whole step down from where it was original written, ie. the key of D. 
Additional increases of the gain of certain bandwidths were also adjusted to allow for a more 
optimal listening experience with the headphones inside MRI.  

Assessing the validity of emotional states and their transitions with independent 
ratings.  
In order to validate the emotion transition timepoints and the emotions they were intended to 
induce, subjective emotion measures were collected via a custom open source web 
application built using JavaScript (http://www.jonaskaplan.com/cinemotion/) from an 
independent group of participants. The tool instructed participants to listen to a piece of 
music and to think about what emotion they are feeling in response (not how they think the 
performer/composer is feeling). While the music is playing, participants were instructed to 
select one of five possible (“happy”, “sad’, “anxious”, “nostalgic”, and “calm”) buttons to “turn 
on” that emotional label when they felt it and to press it again to “turn off” that emotional label 
when they no longer felt that particular emotion. The label, onset time, and offset time were 
recorded continuously. Each participant listened to only one of the 4 possible 15-minute 
pieces, divided into three ~5-minute sections with a self-paced break in between each to 
maintain focus. The breaks occurred within the middle of an emotional event, not at 
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transition points. In addition, at the end of the final section, the ending of the piece 
transitioned into a completely different piece (Blue Monk by Thelonious Monk). This contrast 
was used as an attention check: any participant that did not turn off or on any of the 5 
buttons within a window of time (1.5 before to 5.7s after) around the transition to this new 
piece was removed from the analysis.  

To determine the number of people needed to rate each piece, we used results from a 
previous dataset of N = 80 people rating music clips designed to induce happiness or 
sadness11. With 100 bootstrapped samples of N participants randomly (ranging from 10-80) 
sampled from this dataset, the average RMSE between mean ratings with 35 people and the 
overall mean ratings with 80 people explained 67% of the variance, compared to 43% with 
25 and 79% with 45. This suggests that ratings from 35 people is sufficient to have a reliable 
estimate of how people report feeling in response to emotional music and provides a 
reasonable trade-off between cost/time and variance explained.  

Based on this analysis, we recruited 40 participants to listen to each of the four pieces with 
the assumption assuming that ~10% of subjects would need to be excluded. After removing 
participants that did not press any buttons for the duration of the piece or failed the attention 
check, we analyzed the ratings from 36 people who heard piece A version 1, 36 people who 
heard piece A version 2, 35 people who heard piece B version 1, and 35 people who heard 
piece B version 2.  

At the moments of transitions between emotional events, as identified by the composer, we 
counted the number of raters that turned on or off any emotion at every 1s timepoint. We 
then counted the number of ON/OFF selections at the transition intervals. To determine if 
people were more likely to press the emotion buttons during the transition periods than not, 
we randomly shuffled the order of the events 1000 times and for each permutation, we re-
calculated the number of people who reported an onset of the equivalent emotion at the 
randomly permuted onset time to create a null distribution. Across all four pieces, the 
number of raters who turned ON/OFF an emotion at the transition points was significantly 
greater than at random timepoints (Piece A1 z-stat: 3.6, p-value = 0.0002; Piece A2 z-stat: 
3.21, p-value = 0.0006; Piece B1 z-stat: 4.32, p-value < 0.0001; Piece B2 z-stat: 4.15, p-
value < 0.0001). Furthermore, for every transition point throughout all 4 pieces, there were 
more raters identifying changes in the 3s after the transition than in 95% of permuted 
transitions. 

We next calculated the average number of people that had selected the composer-intended 
emotion during all the timepoints within each emotional event. We computed a null 
distribution by randomly shuffling the emotional event labels 1000 times and recalculating 
the mean. The average number of people that reported experiencing that emotion 
throughout the duration of the event was significantly greater than chance for all emotional 
categories, except for “nostalgia” (calm: mean = 17.63, z-stat = 2.28, p-value = 0.01; happy: 
mean = 17.22, z-stat = 4.40, p-value < 0.001; sad: mean = 16.79, z-stat = 3.38, p-value < 
0.001; anxious: mean = 19.16, z-stat = 5.53, p-value < 0.01; nostalgic: mean = 11.16, z-stat 
= 1.09, p-value = 0.14).  

Post-behavior retrospective recall task 
After listening and rating to the ~15-minute piece of music, participants completed an online 
survey on Qualtrics that utilized retrospective behavioral sampling49. Specifically, for each 
emotional event in the full piece of music, we extracted three unique 10s excerpts taken from 
the beginning, middle and end of the emotional event (see below for more details). 
Participants then listened to one of these three clips (exactly one from each event they heard 
during scanning, i.e. 32 events) selected randomly and presented in a random order. After 
listening to the clip, they were then asked to focus their memory on the first time they heard 
that particular moment in the music during scanning, including no more than a few moments 
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before and after it and to rate 1) how vividly they remember this moment in the piece on a 7-
point likert scale. If they do remember that particular moment (ratings > 1), they were 
subsequently asked to rate 2) how surprising/unexpected that moment in the music was the 
first time they heard it, 3) how happy/joyous did that moment make them feel; 4) how sad did 
that moment make them feel, 5) how anxious/tense did that moment make them feel, 6) how 
calm/relaxed did that moment make them feel, 7) how dreamy/nostalgic did that moment 
make them feel, and 8) how much did they enjoy this moment of the piece. Participants 
listened to exactly one 10s clip from each of the emotional events from the piece that they 
heard, as well as one additional clip from the piece they did not hear as an attention check, 
for a total of 17 clips.  
 
The clips were created using pyDub package, a Python-based library used for audio 
manipulation (https://github.com/jiaaro/pydub). Each emotional event was segmented into 
three 10s clips, evenly spaced throughout the duration of the event. To avoid the impact of 
onset/transition spillover, the first 3s and last 2s of the emotional event were not included. 
Because emotional events varied in length, this meant that the gap between successive clips 
varied and was determined by taking the entire duration of the event and finding the gap 
length that evenly spaced the clips throughout the duration of the event. During the survey, 
participants only heard 1 of the 3 possible clips from each event, randomly chosen and 
balanced across participants.  
 
fMRI task, acquisition, and preprocessing 
 
During scanning, participants listened to two full-length pieces of music (A and B) with no 
explicit instructions other than to listen attentively and restrict movement as much as 
possible (see Fig. 1B). Which version of piece A and B, as well as the order of presentation 
of the two stimuli, was counterbalanced across participants. In between the two music-
listening sessions, participants watched a ~12.5 minute audio-visual movie (Rhapsody in 
Blue from Fantasia 2000), which was used for functional alignment29.  
 
MRI images were acquired on a 3T Siemens Prisma scanner using a 64-channel head coil. 
T2*-weighted echoplanar (EPI) volumes were collected with the following sequence 
parameters: TR = 1500 ms; TE = 30 ms; flip angle (FA) = 90°; array = 64 × 64; 34 slices; 
effective voxel resolution = 2.5 × 2.5 × 2.5 mm; FOV = 192 mm). A high-resolution T1-
weighted MPRAGE image was acquired for registration purposes (TR = 2170 ms, TE = 4.33 
ms, FA = 7°, array = 256 × 256, 160 slices, voxel resolution = 1 mm3, FOV = 256). Each of 
the two music-listening scans consisted of 607 images (6s of silence before the music 
begins, 896s/597 images of music listening, followed by 9s of silence at the end). The 
movie-watching scan was acquired with identical sequence parameters to the EPI scans 
described above, except that the scans consisted of 496 images (744s).  

MRI data was converted to Brain Imaging Data Structure (BIDS) format using in-house 
scripts and verified using the BIDS validator: http://bids-standard.github.io/bids-validator/. 
The quality of each participant’s MRI data was assessed using an automated quality control 
tool (MRIQC v0.10)50. MRIQC creates a report for each individual scan based on 
assessment of movement parameters, coregistration, and temporal signal-to-noise (tSNR) 
calculations. We visually inspected the assessment reports for each participant to ensure 
adequate coregistration and fieldmap correction.  

Functional data included in this manuscript come from preprocessing performed using 
FMRIPREP version 20.2.151,37,38 [RRID:SCR_016216], a Nipype52 [RRID:SCR_002502] 
based tool. Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) 
using N4BiasFieldCorrection v2.1.053 and skull-stripped using antsBrainExtraction.sh v2.1.0 
(using the OASIS template). Brain surfaces were reconstructed using recon-all from 
FreeSurfer v6.0.154 [RRID:SCR_001847], and the brain mask estimated previously was 
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refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical gray-matter of Mindboggle55 [RRID:SCR_002438]. 
Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c56 
[RRID:SCR_008796] was performed through nonlinear registration with the antsRegistration 
tool of ANTs v2.1.056,57 [RRID:SCR_004757], using brain-extracted versions of both T1w 
volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter 
(WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast58 (FSL 
v5.0.9, RRID:SCR_002823). 

Functional data was motion corrected using mcflirt (FSL v5.0.9)59,60. Distortion correction 
was performed using an implementation of the TOPUP technique61 using 3dQwarp (AFNI 
v16.2.0762). This was followed by co-registration to the corresponding T1w using boundary-
based registration59 with nine degrees of freedom, using bbregister (FreeSurfer v6.0.1). 
Motion correcting transformations, field distortion correcting warp, BOLD-to-T1w 
transformation and T1w-to-template (MNI) warp were concatenated and applied in a single 
step using antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. 

Physiological noise regressors were extracted applying CompCor63. Principal components 
were estimated for the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). A mask to exclude signal with cortical origin was obtained by eroding the brain 
mask, ensuring it only contained subcortical structures. Six tCompCor components were 
then calculated including only the top 5% variable voxels within that subcortical mask. For 
aCompCor, six components were calculated within the intersection of the subcortical mask 
and the union of CSF and WM masks calculated in T1w space, after their projection to the 
native space of each functional run. Frame-wise displacement64 was calculated for each 
functional run using the implementation of Nipype. 

Many internal operations of FMRIPREP use Nilearn65 [RRID:SCR_001362], principally within 
the BOLD-processing workflow. For more details of the pipeline see 
https://fmriprep.readthedocs.io/en/20.2.1/workflows.html. 

Additional nuisance regressors were regressed out of the data, including six scan-to-scan 
motion parameters (x, y, z dimensions as well as roll, pitch, and yaw), their derivatives, CSF 
and WM signal, framewise displacement, and the first five the first five noise components 
estimated by aCompCor39. High pass temporal filtering (0.008 Hz) was applied using 
discrete cosine bases. The resulting whole-brain time series were then z-scored within 
subjects to zero mean and unit variance. All preprocessing steps were performed using 
custom scripts written in Python that incorporate a variety of packages, including Brainiak, 
Nibabel, Nilearn, and Scikit-learn.   

Functional alignment using the shared response model 
Prior to any further analyses, to account for the fact that anatomical alignment techniques 
may be insufficient for aligning fine-grained spatial patterns across individuals, we used a 
shared response model (SRM) to functionally align regions into a common space66. 
Specifically, we fit the model using brain activation in response to an audio-visual movie 
without lyrics (Rhapsody in Blue by from the movie Fantasia 2000) and applied it to brain 
patterns recorded during the music-listening task. The model determines a linear mapping 
(from voxels to shared features) between an individual’s functional response and a shared 
response that is well-aligned across subjects35. Specifically, the weight matrix (features by 
voxels) fit to the movie data was used to transform raw voxel activity (voxels by time) during 
music listening into a shared feature space (features by time). To simplify subsequent 
analyses, the number of features was set to be consistent across all ROIs/searchlights, 
independent of the number of voxels within the ROIs. We chose to set the number of 
features to be 10% of the size of the largest ROI, yielding 80 features.    
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Post-scanning retrospective recall task   
After scanning, participants completed the same retrospective behavioral sampling survey 
on Qualtrics as the behavior participants (see above). For the excerpts that they remember 
hearing during scanning, participants provided ratings for how happy, sad, calm, anxious, 
surprised, and nostalgic they felt as well as how much they enjoyed that moment in the piece 
the first time they heard it. The ratings were used as input features for encoding models (see 
Fig. 1C).     

Inclusion/Exclusion Criteria 
Data collection and analysis were not performed blind to the conditions of the experiments. 
That being said, all critical conditions are within-subject and within-run and the experimenter 
did not interact with the participant during scanning, except to ensure the safety of the 
participant. Participants were recruited through flyers posted throughout the Greater New 
York area and online. To qualify, interested individuals had to be between the age of 18-55, 
native English-speakers, mostly right-handed (as determined by the Edinburgh Handedness 
Questionnaire), with normal hearing. Additional exclusion criteria included: basic MRI 
contraindications (metallic implants, pacemaker, pregnancy), a history of psychosis, a history 
of electroconvulsive therapy, a history of brain disorders, including stroke, tumor, infection, 
epilepsy, degenerative diseases and head trauma, currently taking (or taken within the last 
month) medications that target the central nervous system (neuroleptics, anticonvulsants, 
antidepressants, benzodiazepines), and any diagnosis of learning disabilities.  

Three participants were removed due to technical issues and one participant was excluded 
due to excessive movement (more than 20% of TRs for each session exceed a framewise 
displacement of 0.3 mm67. Finally, because our main analysis involved group-averaged data, 
we removed 4 functional runs in which participants showed particularly idiosyncratic brain 
data, operationalized as having an average pairwise ISC less than 2 standard deviations 
below the mean ISC across all participants.  

Which brain regions track transitions from one emotional state to another?  
 
For all analyses, we used a multivoxel searchlight approach, in which data from circular 
groups of vertices on the cortical surface (radius 11 vertices/ ~15mm radius, with each 
vertex covered by 14 different searchlights) were iteratively selected for analysis47. We 
additionally ran the respective models/analyses on 11 subcortical regions of interest, 
including the left and right thalamus, striatum (caudate and putamen), pallidum, 
hippocampus, amygdala, and the bilateral nucleus accumbens, as defined by the Freesurfer 
subcortical parcellation. In each of the below analyses, to correct for multiple comparisons 
across searchlights, we performed a clustering threshold approach, for which we re-ran the 
given analysis 1000 times with null data, calculated the number of adjacent vertices that 
were statistical significant at the p = 0.05 uncorrected cutoff (to form clusters), and took the 
max cluster size for each permutation. We then determined the cluster sizes of our real data 
in the same way and determined how many of those were greater than 95% of the null 
clusters (cluster-threshold = 0.05).  
 
Hypothesis-driven approach 
To identify brain regions sensitive to emotion transitions as defined by the composer, for 
each searchlight/ROI, the correlation between the patterns of shared features (from 
hyperalignment) were computed for all pairs of time points. We then took the average 
correlation between all TRs that were within an emotional event and all TRs that spanned an 
emotional event (i.e. between event t and an adjacent event t + 1). The statistical 
significance of this across- vs. within-boundary correlations was calculated by randomly 
shuffling the boundaries of events (preserving event lengths) and re-calculating the within vs. 
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across boundary correlations for each region68. Cluster-thresholding was then applied to the 
resulting statistical map (see Fig. 2A).  
 
Data-driven approach 
While the model-based approach affords us more statistical power, it does not tell us 
whether emotion transitions are the dominant factor driving pattern transitions in a brain 
region. We therefore supplemented the above findings with data-driven, generative models 
that try to learn latent “states” as well as their transitions based on the patterns of recorded 
brain activation. Combined with above, these results illuminate if primary brain pattern shifts 
are emotion-driven, not simply that emotional events contribute to pattern shifts. For this, we 
used an HMM-based event segmentation model68, which assumes that participants 
experience a sequence of discrete events while processing a naturalistic stimulus and each 
of these events has a discrete neural signature. The model also assumes that all states 
should be visited at least once and that all participants end in a particular state. For each 
time point, the model determines the likelihood that a region, based on signal across the 
shared feature dimensions, is in a particular state, assigning it a value between 0 and 1. 
Importantly, the model does not assume that events have the same length.  
 
For each searchlight/ROI, the event segmentation model was applied to data in SRM space, 
averaged across all with the number of events set to the number of emotional transitions 
defined by the composers (16 for each piece). After fitting the HMM, we obtain an event by 
timepoint matrix for each piece, giving the probability that each timepoint belongs to each 
event. For each TR, we then take the entropy (using the scipy stats function) across the 
probability distribution, which tells us, for each TR, the likelihood of a boundary switch. We 
then calculated this entropy value at the moments of composer-defined transitions and 
determined if these values were greater than what would have been expected by chance 
through permutation testing. A null-distribution of entropy values was created by shuffling the 
timing of the behavioral events (preserving their lengths) 1000 times and re-calculating the 
entropy values at those new events. The average entropy at real event transitions was then 
compared to the average entropy value for null distribution to calculate a z-statistic and a 
subsequent p-value. Cluster-thresholding was then applied to the resulting statistical map 
(see Fig. 3A).  
 
Do emotional-categories significantly predict brain activation patterns above features 
that pertain to acoustics of the music or subjective experiences?  
To evaluate the sensitivity of brain regions to changes in higher-level emotional dimensions 
(self-report emotional intensity, vividness, enjoyability, and surprise) as compared to lower-
level musical and acoustic dimensions (instruments/timbre, dynamics, harmony/melody, 
tempo), regularized (ridge) regression was used to predict the time course of each feature 
from in shared space within a region. Ridge regression allows us to include multiple, highly-
correlated predictors into a single model69. High-level emotion features included subject-
specific ratings for the post-scanning recall questions (vividness, enjoyability, surprise, 
happy, sad, anxious, calm, nostalgic). Since each participant rated three different sections 
from each emotional event, the average of the three ratings within each subject was used. 
The low-level, musical features included the four features given from the composers: the 
time signature of each event (4/4 or 3/4), the BPMs (80 or 160), modality (major or minor), 
and the percentage of time within the event that each of the four instruments was heard (1 
regressor for each instrument with values ranging from 0 to 1), as well as several acoustic 
features extracted for each event using the librosa Python package70: mean and std of root 
mean squares (RMS, dynamics), mean and std of the log of the attack phase of the 
envelope of the signal (articulation), the mean and the std of the per frame chroma 
centroid/chromogram center (pitch/melody), and the mean and std of harmonic change 
between consecutive frame (harmony, difference in harmonic content between consecutive 
frames)71–73.  
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For each subject, all regressors (brain, emotion, and musical) were z-scored, resulting in a 
feature by event matrix of vectors. For training and test, we used leave-one-out cross-
validation, in which one event was left out during each fold. For each fold, to find the optimal 
regularization parameter and avoid overfitting, an inner cross-validation was used on the 
training set, again leaving one event out for each fold and calculating the regularization 
parameter (20 possible alpha values geometrically spaced between 1 and 100000) that 
maximizes the correlation between actual value of the 80 shared response features for the 
held-out validation event and the predicted values (see Fig. 4A). This alpha value was 
subsequently used to predict share response feature values from the training feature set. 
Finally, we calculated correlation between the testing event brain data and the predicted 
values.  
 
To determine the brain areas that were specifically sensitive to subjective emotional 
responses to the music, we ran two separate encoding models, one that included both 
emotion and musical features and one that included only musical features. We then tested 
which brain areas showed correlation values between the predicted and actual signal that 
was significantly greater in the full model (emotion + musical) as compared to the music only 
model. Statistical significance was computed using a one-tailed t-test to determine if the 
mean difference in correlations (full model minus musical model) was significantly greater 
than 0 across participants for each surface vertex. T-values were corrected using cluster 
thresholding (as described above).  

How do brain states and their transitions vary as a function of the recent 
emotional context?  
 
Assessing the context manipulation on the time course of emotion ratings.  
To assess if the context influenced the patterns of emotional responses to the music, for 
each event that a participant heard, we constructed the matrix of the participant’s ON/OFF 
ratings (1/0) across all 5 emotional categories for all timepoints within the event. We then 
split participants into four groups: two groups (split-half) who heard the event in version 1 
(V1H1 V1H2 ) of the piece and two groups (split-half) that heard the event in version 2 of the 
piece (V2H1 V2H2 ) . For each musical clip, we next calculated the Pearson correlations 
between the ratings matrices for pairs of participants within the same condition (V1H1-V1H2 
and V2H1-V2H2) as well as across conditions (V1H1 -V2H1 , V1H1 -V2H2  , V1H2 -V2H1  , and V1H2 -
V2H2 ) and took the mean of the within-condition pairwise correlations and the across-
condition pairwise correlations. Within vs. across condition pairwise correlations were 
compared to 1000 null correlations computed by shuffling the condition (clip version) 
distribution in which the participant condition was randomly shuffled 1000 times.  
 
To determine if the context manipulation additionally influenced the time it took for 
participants to recognize and report feeling the intended emotion of each clip, we calculated 
the time-to-peak for each event, operationalized as the moment when the number of 
participants who turned on the intended emotion for this event reached 90% of its maximum. 
Only events in which at least 30% of the total participants turned on the intended emotion 
were included in this analysis, which excluded one calm clip. Across each emotion label, the 
average time-to-peak was fastest for anxious clips (M = 9.93s) followed by calm (M = 
10.92s), happy (15.71s), and the slowest for sad (22.14s).  
 
To statistically determine how the change in emotional context, i.e. the preceding emotion, 
modulated the time to peak, we first categorized all events across the two pieces into one of 
4 conditions: a positive emotional event preceded by a negative emotional event (NP), 
positive emotion preceded by a positive emotion (PP), negative emotion preceded by a 
positive emotion (PN), and negative emotion preceded by a negative emotion (NN). This 
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analysis excluded all nostalgic clips and the first events of each piece, resulting in 14 events 
in each of the 4 categories across all four pieces. We next created a null distribution by 
randomly permuting whether or not the event was preceded by a negative or positive 
emotion for each valence separately.  
 
Systematic changes in spatial patterns of brain activation for emotional events based 
on context.  
To evaluate how preceding context influences brain representations of emotions, we 
assessed the degree to which brain activation pattern were systematically altered based on 
the emotional event that came before it. To this end, we quantitatively compare the pattern 
evoked by an event in all pairs of subjects. If context systematically alters brain patterns that 
correspond to a particular emotion, then subjects who experienced an event in the same 
context (both heard it in piece A, for instance) will have more similar patterns of activation. 
To test these hypotheses, within a particular ROI/searchlight, we first averaged the data 
across time points within each event, resulting in one pattern of SRM feature-wise activity 
per each emotional event. We did this for each participant individually and then calculated 
the across-subject pairwise Pearson correlation for each of the 35 events (see Fig. 5A). For 
each event, we then binned pairs of participants depending on which version of the two 
pieces they heard, that is, if the context in which that participant heard an emotional event 
was preceded by the same valence or a contrasting valence. This results in two groups: 1) 
both subjects experienced an event in the same context (i.e. r(A1,A1), r(B1,B1),r(A2,S2),or r(B2,B2)) 2) 
both subjects experienced an event in different contexts (i.e. r(A1,A2) or r(B1,B2)). We then 
calculated the mean of the across-subject correlations and averaged across events within 
each grouping. We tested whether the average cross-subject pairwise correlations for 
emotional events that were heard in the same context were significantly greater than those 
heard in different contexts28:  

Piece A: geometric_mean(r(A1,A1) r(A2,A2)) > r(A1,A2) 

Piece B: geometric_mean(r(B1,B1) r(B2,B2)) > r(B1,B2) 

mean(geometric_mean(r(A1,A1) r(A2,A2)), geometric_mean(r(B1,B1) r(B2,B2))) > mean(r(A1,A2), r(B1,B2)) 

To assess statistical significance, we performed resampling analysis wherein the participant 
labels (whether each participant heard version 1 or version 2 of the pieces) are randomly 
shuffled 1000 times. For each shuffling, the cross-participant correlation matrix was 
recalculated and the means of cross-subject correlations binned according to the same 
groupings as above (now randomized) were re-calculated. The true difference in correlation 
values was compared to the null distribution in which context is random to produce a p-value 
for every region/searchlight. Resulting statistical maps were cluster-thresholded (cluster-size 
at p value < 0.05).  

Systematic shifts in timing of transitions based on context. 
To evaluate how preceding context influences the timing of emotional experience in the 
brain, we tested whether systematic shifts in the timing of event transitions occurred when 
the event was preceded by an event with a similar or contrasting valence, using a 
previously-developed approach30. A measure of the “speed” of the transition from one 
emotion to the next can be obtained using the probability function of the HMM, which, for 
each time point, gives a value (between 0 of 1) of the likelihood that the brain is in a 
particular state. For each emotional event, we selected in both version A and version B the 
timepoints corresponding to this event and its preceding event. Because the preceding event 
differs across the two conditions, we cropped the longer one to have the same length as the 
shorter one, ensuring that the number of timepoints was matched across conditions. We ran 
separate HMMs for group average data for these timepoints for each searchlight/ROI, setting 
the number of events in the model to 2. We then calculated the expected value of the event 
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assignment at each timepoint (dot product of the probability function with event labels) and 
summed this expected value across timepoints (higher sums correspond to faster 
transitions; see Fig. 6A). The difference in this sum between the two conditions indicates the 
number of timepoints by which the event transition is shifted, which can be converted into 
units of seconds by multiplying by the TR (1.5s).  

To compare how the preceding emotional event changes the speed of transition we 
categorized all events across the two pieces into one of 4 conditions: a positive emotional 
event preceded by a negative emotional event (NP), positive emotion preceded by a positive 
emotion (PP), negative emotion preceded by a positive emotion (PN), and negative emotion 
preceded by a negative emotion (NN). A t-statistic (mean divided by standard deviation) was 
calculated to compare differences in speed of transition between the NN and PN condition 
and then PP and NP conditions and the two resulting values were averaged. Statistical 
significance of the averaged t-statistic was evaluated through bootstrapping, i.e. by randomly 
sampling data from the 40 participants with replacement 1000 times, re-running the above 
analysis and re-calculating the test statistics.  

Data availability 
Simulated data used for power analysis are made accessible for peer-review of the Stage 1 
manuscript. Upon acceptance of the manuscript, fMRI images in BIDS format will be 
published on OpenNeuro. We will also publish the musical stimuli and behavioral ratings as 
a dataset to be used by researchers interested in music and emotions.  

Code availability 
Code used to conduct the all analyses are made available on OSF 
(https://osf.io/a57wu/?view_only=996150c5d6fc49c1a004c78ef2f852d3). Upon acceptance 
of the manuscript, all code will be made publicly available on OSF as well as the first 
author’s Github page, so that independent researchers reproduce the results.  
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