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ABSTRACT
BACKGROUND: The waxing and waning of negative affect in daily life is normative, reflecting an adaptive capacity to
respond flexibly to changing circumstances. However, understanding of the brain structure correlates of affective
variability in naturalistic settings has been limited. Using network control theory, we examine facets of brain structure
that may enable negative affect variability in daily life.
METHODS: We used diffusion-weighted imaging data from 95 young adults (age [in years]: mean = 20.19, SD = 1.80;
56 women) to construct structural connectivity networks that map white matter fiber connections between 200
cortical and 14 subcortical regions. We applied network control theory to these structural networks to estimate the
degree to which each brain region’s pattern of structural connectivity facilitates the spread of activity to other
brain systems. We examined how the average controllability of functional brain systems relates to negative affect
variability, computed by taking the standard deviation of negative affect self-reports collected via smartphone-
based experience sampling twice per day over 28 days as participants went about their daily lives.
RESULTS: We found that high average controllability of the cingulo-insular system is associated with increased
negative affect variability. We also found that greater negative affect variability is related to the presence of more
depressive symptoms, yet average controllability of the cingulo-insular system was not associated with depressive
symptoms.
CONCLUSIONS: Our results highlight the role that brain structure plays in affective dynamics as observed in the
context of daily life, suggesting that average controllability of the cingulo-insular system promotes normative negative
affect variability.

https://doi.org/10.1016/j.bpsgos.2021.11.008
Our lives are given meaning and color by our capacity to
experience dynamically evolving affective responses. The dy-
namic nature of these experiences (1,2) has been documented
in behavioral studies that densely sample self-reports of
emotion in daily life (3–5). These data show that affect
variability—or shifts in levels of affective experience over time
(6)—is normative and is indicative of a capacity to respond
flexibly to changing conditions (6–9). Yet, there are important
between-person differences in affect variability that are asso-
ciated with psychological and physical health outcomes (6,10).
Between-person differences in affect variability likely stem
from multiple sources and may be indicative of the individual,
the context in which they are embedded, or the person-context
system as a whole (11).

Here, we focus on the association between brain structure
and negative affect variability. The brain can be conceived of
as a network of neuronal ensembles or regions (nodes) inter-
linked by anatomical wires (edges) in a complex and patterned
architecture. This connective structure supports the dynamics
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of neural activity as the brain transitions through functional
brain states, traversing a path in a dynamic state-space
landscape (Figure 1) (12). The trajectory of these brain state
transitions is modulated by both external and internal pertur-
bations (13). The ease with which these internal
perturbations—driven by activity in individual brain regions—
modulate the brain’s trajectory depends on the strength and
pattern of structural connections associated with that region
(14). Network control theory is a branch of physical and engi-
neering sciences that can be used to quantify the ease with
which particular brain regions can modulate the brain’s tra-
jectory (15,16). Network control theory models each brain re-
gion’s activity as a time-dependent internal state that is
predicted from a combination of three factors: 1) its previous
state, 2) whole-brain structural connectivity, and 3) external
inputs. After linearizing the system’s dynamics, average
controllability quantifies a brain region’s capacity to distribute
activity through the brain, via both direct and indirect con-
nections, to guide changes in brain state. Average
ociety of Biological Psychiatry. This is an open access article under the
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Figure 1. Construction of average controllability
indices. (A) Participants (n = 95) underwent diffusion-
weighted imaging. (B) The resulting data underwent
tractography to map white matter fiber streamline
connections between 214 cortical and subcortical
regions. (C) The resulting structural brain networks
consist of nodes (brain regions) connected by edges,
links between nodes representing the number of
streamlines connecting them, normalized for density
(34). (D) Structural brain networks are analyzed in a
network control framework (15,58,59) to compute

the structural support that network offers for moving the brain to easy-to-reach states following control input. MRI, magnetic resonance imaging. [For further
information see Parkes et al. (59) and Tang et al. (60)].
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controllability complements conventional graph-theoretic
metrics of structural brain organization, such as strength and
centrality metrics that describe brain structure (17–19), by
modeling how brain regions with particular patterns of con-
nections with regions throughout the rest of the brain can
facilitate particular dynamics in brain function.

Networks with high average controllability are more influ-
ential in the control of network dynamics, exhibiting greater
capacity of driving the system into different states with little
effort (i.e., input energy). Some individuals may have structural
brain network architectures that more easily facilitate changes
in brain state trajectories than others (i.e., high average
controllability), and consequently, they may show greater
negative affect variability. We hypothesize that individuals with
functional brain systems encompassing cingulate and fronto-
insular regions that can more readily drive the brain into
different states will exhibit greater negative affect variability.
Our hypothesis stems from the fact that the cingulo-insular
functional system facilitates access to cognitive control re-
sources (e.g., attention, working memory) that coordinate
behavioral responses appropriate to meet the demands of
situations (e.g., studying) (20–22). This functional system fa-
cilitates access to cognitive control by engaging the fronto-
parietal system while suppressing default mode system
activity (20,23). The cingulo-insular system’s facilitation of
flexible behavior may also stem from engagement with func-
tional systems beyond the frontoparietal and default mode
systems, with functional magnetic resonance imaging (fMRI)
studies indicating that nodes in this system have a unique
spatiotemporal dynamic profile, showing substantial time-
varying functional interactions with other functional systems
(21,22). Notably, between-person differences in the extent to
which the cingulo-insular system interacts with other functional
brain systems is positively correlated with cognitive flexibility
(21,22).

Given the cingulo-insular system’s role in recruiting other
brain systems to facilitate changes in behavior (24), we tested
the hypothesis that individuals with brains exhibiting a pattern
of structural connectivity that facilitates the spread of activity
from this system to other systems of the brain and with the
ability to drive the brain into different states (i.e., high average
controllability) would also have high negative affect variability.
METHODS AND MATERIALS

We used data from the Social and Health Impact of Network
Effects (SHINE) study, a larger study designed to provide
Biological Psychiatry: Global O
insight into health behaviors and social interactions among
young adults. All research was conducted in accordance with
the Institutional Review Boards at the University of Pennsyl-
vania and Columbia University, in addition to the Army
Research Office. All data and code used in the manuscript are
available at http://osf.io/gkahy/. The source code for the
average controllability calculation is available at http://github.
com/nangongwubu/Network-Controllability-Diagnostics.
Participants and Procedure

Recruitment materials advertised a study titled “Social Health
Impact of Network Effects Study (SHINE)” to undergraduate
students who were members of on-campus social groups
across two universities, University of Pennsylvania and
Columbia University. The study was advertised through flyers,
university websites, and e-mail communication. To reach
campus groups, researchers contacted group leaders as
points of contact and further used a snowball sampling
approach, such that participating students could share
recruitment information with their peers who were members of
on-campus social clubs or sports teams. For the current
report, 912 individuals were invited to participate in the study
(see Figure S1 in Supplement 1 for a CONSORT [Consolidated
Standards of Reporting Trials] flow diagram of enrollment and
retention through the study periods). A subset of 661 in-
dividuals (72.48%) of invited participants consented and
agreed to take part in the study. These participants completed
an online survey assessing fMRI eligibility and an hour-long
baseline survey.

Following the baseline survey, participants meeting fMRI
inclusion criteria and agreeing to participate in the next part of
the study (n = 112) were randomized into three conditions as
part of a larger investigation unrelated to the current report:
control (n = 39), mindfulness (n = 38), and perspective taking
(n = 35). Participants attended a laboratory session that
included surveys, an MRI session, and instructions for an
ecological momentary assessment (EMA) and intervention
(EMI) protocol designed to reduce alcohol use (findings are
robust to controlling for intervention condition, and as such, we
present the most parsimonious models without condition
throughout this paper). The day following the laboratory ses-
sion, participants began a 28-day EMA protocol. The EMA and
EMI were completed by 112 participants from 10 groups in the
following conditions: control (n = 39), mindfulness (n = 38), and
perspective taking (n = 35); however, final analyses were
conducted on 95 participants following exclusion of
pen Science October 2022; 2:432–439 www.sobp.org/GOS 433
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participants who failed to complete the EMA component owing
to accidentally deleting the smartphone application from their
phones (n = 5) or who were scanned with incorrect MRI
parameters (n = 12). Participants also completed 6- and 12-
month follow-up online surveys not presented here. Partici-
pants received up to $135 for participating in this study.
Participants received a $20 Amazon gift card for completing
the online baseline survey, $50 cash for completing the labo-
ratory session, a $55 Amazon gift card for answering at least
70% of EMAs, and an additional $10 gift card if more than 80%
of group members completed the online baseline survey. We
focus on the baseline survey, the MRI session, and the EMA
and refer readers to http://osf.io/gkahy/ for greater detail about
the rest of the protocol.

The participants reported on in this manuscript comprise 95
young adults aged 18–28 years (mean = 20.19, SD = 1.80
years; 56 women). Participants identified as Asian (30.5%);
Black or African American (2.1%); Latino/a (5.3%); White
(52.6%); and as multiple categories: White, American Indian or
Alaska Native (2.1%); White, Asian (3.2%); White, Asian, Native
Hawaiian, or other Pacific Islander (1.1%); and White, Latino/a
(3.2%). Data collection began in February 2019 and ended in
April 2020.

MRI Data Acquisition, Preprocessing, and Mod-
eling. Imaging data were acquired on 3T Siemens Trio
scanners equipped with a 64-channel head coil. The diffusion-
weighted imaging (DWI) data were preprocessed and recon-
structed through QSIprep v 0.8.0 (25). Briefly, the data were
first denoised and bias corrected and then underwent sus-
ceptibility distortion correction and motion and eddy current
correction via FSL 6.0 and coregistered to T1 space. We also
warped both the Schaefer atlas (26) and the Harvard Oxford
subcortical atlas (27) into individual T1 space to subdivide the
brain into 200 cortical and 14 subcortical regions. Then, the
preprocessed DWI data were reconstructed using generalized
Q-sampling Imaging (28) in DSI-Studio (http://dsi-studio.
labsolver.org). Deterministic tractography (29) was performed
until 5 3 106 streamlines were reconstructed, yielding indi-
vidual structural networks with brain regions as nodes and the
number of streamlines connecting each brain region pair as
weighted edges. Preprocessing was performed using QSIPrep
0.8.0, which is based on Nipype 1.4.2 (30,31)
(RRID:SCR_002502). See Supplemental Methods in
Supplement 1 for greater detail of anatomical and diffusion
data preprocessing.

Ecological Momentary Assessment. On the day after
the laboratory session, participants began a 28-day EMA
period. Each day, participants answered two signal-
contingent surveys per day. A morning survey was sent at
8:00 AM, and an evening survey was sent at 6:00 PM. The
surveys assessed affect, alcohol consumption, and a range
of other variables not reported on in this manuscript (see
http://osf.io/gkahy/ for codebook). Participants completed
on average 52.44 6 6.56 reports (minimum = 18, maximum =
56). The number of responses was unrelated to negative
affect or negative affect variability (rs # 0.03, ps $ .65; 95%
CI 20.24 to 0.23).
434 Biological Psychiatry: Global Open Science October 2022; 2:432–
Measures

We used participants’ reports of demographic information
from the baseline surveys, their ratings of negative affect
during the 28-day experience sampling period, and DWI to
create structural brain networks.

Negative Affect. Negative affect was measured every
morning and evening in response to the question “How
negative do you feel right now?” on a scale of 1 (not at all) to
100 (extremely) in increments of 1. Of a possible total of 5376
negative affect reports, 4982 (92.7%) were available. Partici-
pants completed 18–56 affect reports (mean = 52.44, SD =
6.56) across the experience sampling period. Average negative
affect was calculated using the intraindividual mean across
each participant’s negative affect report time series (mean =
37.38, SD = 14.29). Negative affect variability was calculated
using the intraindividual standard deviation across each par-
ticipant’s negative affect reports time series (mean = 17.88,
SD = 6.44).

Depression. Depression was measured using the 10-item
version of the Center for Epidemiological Studies-Depression
Scale (32). All items included four response categories indi-
cating the frequency of depressive symptoms during the past
week on a 4-point scale of 0 (rarely or none of the time, ,1
day), 1 (some or a little of the time, 1–2 days), 2 (occasionally or
a moderate amount of the time, 3–4 days), or 3 (most or all of
the time, 5–7 days). The scoring of positive items is reversed,
and the possible range of scores is 0–30, with higher scores
indicating the presence of more depressive symptoms. Scores
$10 indicate significant depressive symptoms (33). Partici-
pants’ depressive symptoms ranged from 0 to 22 (median = 9,
SD = 5). Using the $10 cutoff score, 47 participants were
classified as not having significant depressive symptoms, and
45 participants were classified as having significant depressive
symptoms (n = 3 participants failed to complete the Center for
Epidemiological Studies-Depression Scale portion of the
baseline survey).

Average Controllability. From the DWI data, we con-
structed anatomical brain networks by subdividing the brain
into 214 regions using the Schaefer atlas for 200 cortical re-
gions and the Harvard Oxford atlas for 14 subcortical regions.
In these anatomical connectivity matrices, brain regions are
defined as nodes, and a link between two nodes represents the
number of streamlines connecting them, normalized for den-
sity (34). We drew on network control theory to assess the
extent to which large-scale brain networks exert control over
other large-scale brain networks. Controllability of a dynamic
system describes the possibility of driving the current state of a
system to a desired target state via external control input (35).
Here, we focus on average controllability, which quantifies
each region’s capacity to leverage the brain’s underlying
structural connectivity to distribute activity throughout the
brain to guide changes between easily reachable states (15).
Networks with high average controllability are more influential
in the control of network dynamics, driving the system into
different states with little effort (i.e., input energy). The
439 www.sobp.org/GOS
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relationship of the mathematical formulation of network control
to brain networks is discussed in more detail in Gu et al. (15).
To ensure system stability, each participant’s structural con-
nectivity matrix was normalized by dividing each element by
the largest absolute eigenvalue of the matrix plus one (16).
Following normalization, average controllability was calculated
for each node. Next, rank-based inverse normal trans-
formations were applied to each node across participants to
ensure normality (36). Finally, we calculated the mean average
controllability over nodes within each of 17 functional brain
systems (26,30). These system-averaged estimates of average
controllability were taken into subsequent analyses of
between-person differences (see below for further details).

Statistical Analysis

We tested the extent to which negative affect variability was
associated with average controllability of 17 functional brain
systems (30) using 17 separate multilevel models, one for each
system. We used multilevel models to account for the nested
nature of the data (95 participants nested in 10 groups). We
included average negative affect, total brain volume, and in-
scanner motion as covariates. In all models, we specified a
random intercept for group (as participants were nested in
social groups). All analyses used the nlme package in R (R
Foundation for Statistical Computing) (31). We controlled for
multiple comparisons, given our examination of 17 systems,
using the Benjamini-Hochberg (37) false discovery rate (FDR)
control.

RESULTS

Following well-established methods (3,6,38), we operational-
ized negative affect variability by taking the intraindividual
standard deviation of up to 56 reports (2/day for 28 days) of
current negative affect. Participants with higher negative affect
variability showed a greater range in their negative affect
across time relative to participants with lower negative affect
variability (Figure 2).

Average Controllability of the Cingulo-insular
System Is Positively Associated With Negative
Affect Variability

We provide descriptive statistics and correlations of the vari-
ables used in the analyses in Table S1 in Supplement 1. We
found that average controllability of the cingulo-insular system
[labeled Salience/Ventral Attention A in the Yeo et al. 2011
atlas (30); nodes included in this functional system are listed in
Table S2 in Supplement 1, and associations between these
their negative affect around their mean affect, relative to the participant in panel (B
the intraindividual standard deviation of the negative affect time series (SD).

Biological Psychiatry: Global O
nodes and neurosynth meta-analysis maps are listed in
Table S3 in Supplement 1] was positively associated with
greater negative affect variability (b = 9.57, p = .01, pFDR = .03,
Cohen’s d = 0.57) (see Table S4 in Supplement 1; Figure 3).
Notably, this association was observed when controlling for
covariates, including total brain volume, in-scanner motion,
and average negative affect. We included average negative
affect to ensure that the association was specific to variability
and not confounded with average negative affect (3), given that
higher average self-reported negative affect was positively
associated with negative affect variability (b = 0.13, p = .004,
Cohen’s d = 0.65) (see Table S4 in Supplement 1). We provide
results of the multilevel models examining associations be-
tween average controllability and negative affect variability in
the 16 remaining functional brain networks in Table S6 in
Supplement 1. Notably, no associations were significant
following FDR control, and effect sizes were small (Cohen’s
d # 0.29, ps $ .20, pFDRs $ .47) (see Table 1).

In addition, we examined the extent to which our results
were specific to average controllability by computing the
average strength, clustering coefficient, betweenness central-
ity, and closeness centrality (four commonly used network
indices) of the 17 functional brain systems. No associations
between negative affect variability and these additional
network measures reached statistical significance following
FDR control (ps $ .04, pFDRs $ .10; see Supplemental
Analyses in Supplement 1). We direct readers to Table S9 in
Supplement 1 for correlations among these network metrics
within each of the 17 subsystems.

In addition, we conducted an analysis at the node level
rather than the system level to test which specific brain regions
were associated with negative affect variability. After control-
ling for multiple comparisons, we observed a significant as-
sociation between average controllability of the
RH_SalVentAttnA_Ins_2 node (a node in the cingulo-insular
system) and negative affect variability (b = 1.91, p = .003,
pFDR = .008, Cohen’s d = 0.69) (see Table 2). No other nodes
survived FDR control (pFDRs $ .54), but of the top five nodes
with the strongest effect sizes, four belonged to the cingulo-
insular system (see Supplement 2 for supplemental node-
level analyses).

To determine the specificity of the association between
average controllability of the cingulo-insular system and
negative affect variability, we ran multilevel models to assess
the association between average controllability and average
negative affect in addition to other emotion dynamic metrics.
We found no significant associations between average
controllability and average negative affect (ps $ .11), negative
Figure 2. Between-person differences in negative
affect variability. (A) Participants provided up to 56
reports (2 reports per day for 28 days) of their
negative affect on their smartphones as they went
about their daily lives in an ecological momentary
assessment protocol. The time series of negative
affect reports of 2 participants is shown in panels (B)
and (C). Both participants exhibit similar mean (M)
values of negative affect across the 56 reports, as
indicated by the black dashed line. However, the
participant in panel (C) shows greater variability in

) as highlighted in gray. This greater negative affect variability is captured by
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Figure 3. Greater average controllability of the
cingulo-insular system is associated with greater
negative affect variability. (A) Multilevel models
indicate that the strongest association, indicated by
Cohen’s d between negative affect variability and
average controllability was observed in the cingulo-
insular system labeled as Salience/Ventral Attention
A in (30). The association between average control-
lability and negative affect variability was only sig-
nificant in the cingulo-insular system. (B)
Participants with higher average controllability values
(x-axis; average of rank-based inverse normal
transformed within each network within each indi-
vidual) exhibited higher negative affect variability (y-

axis) in their daily lives. Note that the association between average controllability and negative affect variability remains significant when a potential outlier (not
depicted in the figure) is removed.
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affect instability (p = .03, pFDR = .06) (see Table S7 in
Supplement 1), or negative affect inertia (p = .21, pFDR = .64)
(see Table S8 in Supplement 1). Table S10 in Supplement 1
shows correlations among negative affect variability, insta-
bility, and inertia (see Supplemental Analyses for further details
regarding calculations for negative affect instability and
negative affect inertia).

Average Controllability of the Cingulo-insular
System Promotes Normative Negative Affect
Variability

In follow-up analyses, we tested the extent to which the
observed association between average controllability of the
cingulo-insular network reflects normative variation in negative
affect variability versus variability that may place individuals at
risk for psychopathology. In line with previous work (39–41), a
multilevel Poisson regression revealed that greater negative
affect variability related to the presence of more depressive
symptoms as measured by the Center for Epidemiological
Table 1. Effect Sizes (Cohen’s d) for Associations Between
Average Controllability and Negative Affect Variability in the
17 Functional Brain Networks in Descending Order

Network Cohen’s d pFDR
Salience/Ventral Attention A, Cingulo-insular 0.57 .03

Control A 0.29 .47

Default A 0.27 .53

Default B 0.25 .58

Limbic A 0.23 .68

Visual Peripheral, Visual B 0.22 .68

Default C 0.21 .72

Control C 0.19 .77

Dorsal Attention A 0.19 .77

Salience/Ventral Attention B 0.17 .85

Control B 0.17 .85

Somatomotor B 0.14 .95

Dorsal Attention B 0.11 .95

Visual Central, Visual A 0.10 .99

Limbic B 20.04 .99

Temporal Parietal 20.10 .99

Somatomotor B 20.14 .99

Reported p values (pFDR) are following false discovery rate control
(37).
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Studies-Depression Scale (b = 0.02, p = .001, d = 0.63)
(Figure S2 in Supplement 1). However, there was little evidence
that average controllability of the cingulo-insular system was
statistically significantly associated with depressive symptoms
(b = 0.35, p = .11, d = 0.15), indicating that negative affect
variability was unlikely to mediate the association between
controllability of this functional system and depressive sys-
tems. Finally, when depressive symptoms were included as a
covariate in the regression model testing the association be-
tween controllability of the cingulo-insular system and negative
affect variability, average controllability of the cingulo-insular
system remained associated with negative affect variability
(b = 8.42, p = .03, Cohen’s d = 0.50) (see Table S5 in
Supplement 1).

DISCUSSION

We sought to explore the structural organization of brain
systems underlying between-person differences in the extent
to which negative affect fluctuates during daily life. We tested
the hypothesis that individuals with cingulo-insular systems
that have greater ability to facilitate the spread of activity to
other brain systems (i.e., high average controllability) will show
greater negative affect variability in daily life. In line with this
hypothesis, we found that average controllability of the
cingulo-insular system [Salience/Ventral Attention A in the Yeo
2011 atlas (30)] is positively associated with greater negative
affect variability. Supplementary analyses demonstrate that
other network metrics (i.e., strength, centrality, clustering co-
efficient) that describe brain structure organization were not
associated with negative affect variability. This suggests that
network control theory and other model-based approaches
that offer insight into the dynamics made possible by between-
person differences in brain structure may be particularly sen-
sitive for understanding how brain structure organization in-
fluences changes in affective states.

The association between average controllability and nega-
tive affect variability was specific to the cingulo-insular sys-
tem. This suggests that this functional system may serve as a
key control point in structural brain networks subserving affect
variability in daily life. Such an interpretation is consistent with
the cingulo-insular system’s unique role as a system that fa-
cilitates behavioral responses to detected events by signaling
the engagement and suppression of other brain systems
(42,43). Having structural brain network architectures that
facilitate the spread of activity from the cingulo-insular
439 www.sobp.org/GOS
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Table 2. Results of Multilevel Model Examining Associations Between Average Controllability With Negative Affect
Variability in the RH_SalVentAttnA_Ins_2 Nodea Within the Cingulo-insular System

Effect Estimate Standard Error p Value d 95% CI

Fixed Effects

Intercept 13.40b 1.77 ,.001 – 9.88 to 16.91

Average controllability 1.91c 0.61 .003 0.70 0.68 to 3.13

Negative affect 0.12c 0.04 .005 0.64 0.04 to 0.21

Total brain volume 0.17 0.61 .78 0.06 21.04 to 1.39

In-scanner motion 0.12 0.73 .87 0.04 21.33 to 1.57

Random Effects

Intercept 1.65 – – –

Residual 34.04 – – –

A total of 95 participants were nested in 10 groups. Total brain volume and in-scanner motion were sample-mean centered; average
controllability was rank-based inverse normal transformed.

aRH_SalVentAttnA_Ins_2 was the only node surviving false discovery rate control. See Table S2 in Supplement 1 for coordinates.
bp , .001.
cp # .01.
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network to other systems, individuals with cingulo-insular
systems with high average controllability may be more
capable of changing their behavior when salient events are
detected, which in turn may manifest as greater negative
affect variability when these changes in behavior are recorded
over extended periods. Future experimental work is necessary
to test the extent to which average controllability relates to
behavior as related to detecting salient events.

An additional finding of interest is that average controlla-
bility of the salience system was unrelated to daily-life average
negative affect. This result indicates that having a cingulo-
insular system with a pattern of structural connectivity that
facilitates the spread of activity to other brain systems is
implicated in experiencing greater variability in changing af-
fective states rather than simply experiencing an overall
greater intensity of negative affect. Furthermore, average
controllability of the cingulo-insular system was associated
with the spread or deviation from one’s average level of affect
over time but not with other temporally dynamic processes
(e.g., affect instability and affect inertia). This specificity further
speaks to the cingulo-insular system’s role in affect variability.
Notably, the ability of the cingulo-insular network to engage
with other systems of the brain to promote behavior change is
often highlighted as a boon to promote cognitive, affective,
and behavioral flexibility (21,22). The current findings suggest
that brain network structures that facilitate an especially
strong influence of the cingulo-insular system on other brain
systems promote flexibility in affect.

Importantly, follow-up analyses confirm previous work
indicating that excessive negative affect variability is
associated with greater symptoms of depression (41).
However, there was little evidence that this excessive
variability, better conceptualized as affective lability (44)
and emotion dysregulation, was associated with average
controllability of the cingulo-insular system. Instead,
average controllability of the cingulo-insular system was
associated with normative variation in negative affect
variability, in line with the system’s role in cognitive and
affective flexibility (22).
Biological Psychiatry: Global O
Study Limitations and Future Directions

Despite the methodological strengths of the present investiga-
tion, the findings are not without limitations. First, an interval-
contingent EMA protocol was used whereby participants
responded to prompts at the same time every day. This
approach likely supported the high response rate (92.7% of re-
ports were completed), but it may have also led participants to
change their behaviors in anticipation of assessments in a way
that may be mitigated with signal-contingent or variable time-
based approaches. Second, the study sample exhibited low
levels of depression. Thus, findings may not generalize to
samples experiencing more severe levels of depression.
Although our findings demonstrate no gender-related differ-
ences in the relationship between negative affect variability and
average controllability, previous work has observed significant
sex differences in functional connectivity in the cingulo-insular
network (45) and in tractography when mapping the con-
nectome (46). Future investigations should examine how sex
assigned at birth relates to average controllability of the cingulo-
insular system. Finally, we focused on average controllability,
which estimates the extent to which individual brain regions
distribute activity to other brain regions across the whole brain.
Given that the engagement of cingulo-insular regions with re-
gions of the frontoparietal and default mode systems is specif-
ically highlighted in theories of cognitive andbehavioral flexibility
(30,36), future network control applications may, with suitable
analytic frameworks (47), be capableof determining theextent to
which findings are driven by a whole-brain spatiotemporal di-
versity of activity of cingulo-insular regions (21,22) relative to
engagement with the default mode and frontoparietal systems
specifically.

In sum, we find that between-person differences in the ease
with which the cingulo-insular system can drive the brain into
different states are associated with between-person differ-
ences in negative affect variability as observed in daily life.
These findings provide insight into the role of brain structure in
everyday affective experiences and provide additional support
for the cingulo-insular system as a key functional brain system
involved in affective dynamics.
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