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A B S T R A C T

In the United States over one-third of the population, including children and adolescents, are overweight or
obese. Despite the prevalence of obesity, few studies have examined how food cravings and the ability to reg-
ulate them change throughout development. Here, we addressed this gap in knowledge by examining structural
brain and behavioral changes associated with regulation of craving across development. In a longitudinal design,
individuals ages 6–26 completed two structural scans as well as a behavioral task where they used a cognitive
regulatory strategy to decrease the appetitive value of foods. Behaviorally, we found that the ability to regulate
craving improved with age. Neurally, improvements in regulatory ability were associated with cortical thinning
in medial and lateral prefrontal cortex. We also found that models with cortical thickness measurements and age
chosen by a lasso-based variable selection method could predict an individual’s regulation behavior better than
age and other behavioral factors alone. Additionally, when controlling for age, smaller ventral striatal volumes
were associated with higher body mass index and predicted greater increases in weight two years later. Taken
together, these results demonstrate a role for structural brain changes in supporting the ability to resist cravings
for appetitive foods across development.

1. Introduction

Obesity is a major public health concern, with over a third of chil-
dren and adolescents in the United States labeled as overweight or
obese (Lobstein et al., 2015; Ogden et al., 2014). The ability to resist or
redirect cravings for appetizing but unhealthy foods is critical in
maintaining a normative weight. Failures to appropriately regulate
such cravings can lead to excess weight and obesity, which over time
may contribute to heart disease, stroke, and diabetes (Flegal et al.,
2012; Ogden et al., 2014). Given these risk factors, it is surprising that
only a handful of studies have examined the relationship between brain
development and craving (Batterink et al., 2010; Giuliani and Pfeifer,
2015; Silvers et al., 2014; van Meer et al., 2016; Yokum and Stice,
2013), and none of these studies have been longitudinal in design.
Furthermore, no former studies have assessed how the structure of
neural regions associated with regulation of craving change with age.

Two types of brain systems are strongly implicated in the regulation
of craving in adults. The first reactivity system is thought to support

appetitive responses to food and includes the ventral striatum (VS), a
subcortical area implicated in assessing the reward value of stimuli. The
second regulation system is thought to support the cognitive control of
affective impulses and includes ventrolateral prefrontal cortex (vlPFC),
ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal cortex
(dlPFC), dorsomedial prefrontal cortex (dmPFC), anterior cingulate
cortex (ACC) and parietal lobe (Giuliani et al., 2018, 2014; Kober et al.,
2010; Siep et al., 2012).

While no studies linking brain structure to regulation of craving
exist, prior cross-sectional functional magnetic resonance imaging
(fMRI) studies on regulation of craving and brain function across de-
velopment found that adolescents and children – as compared to young
adults – showed weaker vlPFC and dlPFC activation coupled with
greater VS activation and self-reported craving (Giuliani and Pfeifer,
2015; Silvers et al., 2014; Yokum and Stice, 2013). These data suggest
that interactions between appetitive reactivity and regulation neural
systems change functionally across development.

Prior work also suggests that these regions change structurally
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across development. For example, VS undergoes reductions in volume
and connectivity to cortex during development (Fareri et al., 2015;
Raznahan et al., 2014). Frontoparietal networks implicated broadly in
self-control show a protracted developmental trajectory relative to
subcortical structures associated with appetitive and emotional re-
sponding (Casey, 2015; Mills et al., 2014a,2014b). However, while it is
known that PFC undergoes dramatic structural changes across devel-
opment (Gogtay et al., 2004; Lenroot and Giedd, 2006; Sowell et al.,
2004), the effects of these changes on appetitive reactivity (i.e. cravings
for food) and regulation remain to be discovered.

While a large body of work exists demonstrating that neural struc-
tures change robustly from childhood to adulthood, to date, there are
no longitudinal MRI-based studies linking these changes to behavioral
measures related to food craving and its regulation. To address this gap
in knowledge, we used a cross-lagged longitudinal design to determine
1) whether and how behavioral markers of craving and its regulation
change with age; 2) whether and how changes in these behavioral
markers relate to structural changes in brain systems implicated in
appetitive reactivity and regulation; 3) which set of neural structures
and individual differences factors best predicted an individual’s reg-
ulation behavior, and 4) the extent to which a real world index of being
overweight or obese - body mass index (BMI) - is associated with
craving, regulation, and brain structure during development.

Participants ages 6–26 were scanned at two time points approxi-
mately two years apart and completed a food craving regulation task in
which craving was measured using participants’ ratings of how much
they wanted to eat a series of appetizing unhealthy foods. We tested
whether age predicted changes in cravings for those foods and the
ability to regulate them, and assessed the role of structural brain ma-
turation in influencing such changes.

2. Methods

2.1. Participants

The individuals in this study represent a subset of participants from
a previously published cross-sectional functional MRI study (Silvers
et al., 2014), and our sample size consisted of those individuals who
returned for the two year follow-up and had complete behavioral and
imaging data. Fifty-three healthy individuals ages 6–23 participated in
the initial experiment and returned approximately two years later for
retesting (Fig. 1, mean time elapsed between scans= 2.07 years,
SD= .47 years). Four participants were excluded either due to ex-
cessive head motion in the scanner or not completing the task, leaving a
total of sample of 49 individuals (mean age=15.08, SD=4.95, 32
female). Participants were recruited from the New York City

metropolitan area and were pre-screened for psychiatric, develop-
mental, and eating disorders prior to participating in the experiment.
The Columbia University Institutional Review Board approved the
study and all participants gave informed consent.

2.2. Task

Participants completed a regulation of craving task (Kober et al.,
2010; Silvers et al., 2014) that included 40 trials in which images of
appetitive energy dense foods were presented (Fig. 2). Food images
were downloaded from public online sources, and pilot testing on a
separate sample of children, adolescents, and adults indicated that all
depicted foods were rated as highly desirable. Care was taken to ensure
a variety of food types were represented with an equivalent re-
presentation of both sweet and salty foods.

Each trial began with a cue word (Close or Far) shown for 2 s. Close
trials assessed appetitive reactivity to the food stimuli by instructing
participants to imagine the food being directly in front of them and to
think about its appetitive features including how it might smell and
taste. Far trials assessed regulation of craving by instructing partici-
pants to use a distancing reappraisal strategy (Silvers et al., 2012)
where they were told to imagine the food was far away and to think
about its perceptual features, such as the color or shape. Following the
cue, participants viewed the food picture for eight seconds, and after a
jittered fixation period of approximately 3 s, used a five-point scale to
rate how much they wanted to eat the foods. Prior to doing this task in
the scanner, participants were trained using a short practice version of
the task in order to become comfortable with using the strategies (see
Silvers et al., 2014 for more details about training).

Twenty trials were assigned to the reactivity condition (Close) and
twenty were assigned to the regulation condition (Far). The order of
conditions and assignment of pictures was counterbalanced across
participants.

2.3. Age calculation

Age at each time point was calculated as the date of scan minus the
date of birth divided by the number of days in a year accounting for
leap years (365.25). Age terms were not rounded in analyses. Age was
plotted continuously and rounded up to the nearest whole number in
figures for visualization purposes.

2.4. Body mass index

After the scan, participants’ height and weight were measured. Body
mass index (BMI) percentile was calculated for all participants using the
Center for Disease Control’s BMI-for-age growth chart (Kuczmarski
et al., 2002). BMI percentile is considered a more accurate measure of
body composition in children than BMI (Mei et al., 2002), and is only
normed for individuals under the age of 20. Thus, for continuous as-
sessments of BMI percentile, we excluded adult participants twenty
years and older. The total sample for continuous analyses in Time 1 was
40 (mean age=12.57, SD=4.09, 26 females) and 33 for Time 2
(mean age=13.25, SD=3.0, 19 females). To be able to compare BMI
across all participants with BMI measurements, we assigned each par-
ticipant to a weight status category as provided by the CDC for BMI
percentile in individuals under age 20, and BMI measurements for in-
dividuals over age 20 (categories= underweight, normal weight,
overweight, obese). More details of BMI methods and results are de-
scribed in supplemental text.

2.5. Behavioral data acquisition

Stimuli were presented using E-Prime 1.0 (Psychology Software
Tools, Inc., https://pstnet.com/). Participants viewed images by
looking at a mirror located above the head coil that reflected a projector

Fig. 1. Age and duration of scan interval for each participant. Each row re-
presents a participant, each dot represents their age at time of scan, and each
line represents the duration between scans.
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located just outside the scanner bore.

2.6. Imaging data acquisition

We acquired structural images on a 3 T Siemens Magnetom Trio
scanner using a high resolution T1-weighted MPRAGE sequence with a
repetition time of 2170ms, an echo time of 4.33ms, and 120 1.5 mm
slices. All structural analyses were conducted using this sequence.

2.7. MRI preprocessing

MPRAGE scans were reconstructed using Freesurfer v5.3.0 (Fischl
et al., 2002, 2004). Images were then processed through Freesurfer’s
longitudinal processing stream (Reuter et al., 2010, 2012). Processing
streams are described in detail in the above citations. After each re-
construction, data were visually assessed by two trained inspectors and
minor edits were made as needed. We excluded scans with movement-
based artifacts (Ducharme et al., 2016). The volume-based longitudinal
stream was used to calculate grey matter volume in subcortical regions,
and we used measurements from the cross-sectional stream to estimate
intracranial volume (ICV), one of our control metrics (Mills et al.,
2016). The surface-based longitudinal stream was used to calculate grey
matter cortical thickness, which is the distance between white matter
and the pial surface.

2.8. Behavioral data analyses

We used lme4 and lmerTest using the statistical software language,
R, to run multilevel regression models on trial-by-trial ratings, nested
by participant to assess contributions of age and cortical thickness to
changes in appetitive reactivity and regulation within and between
participants (Bates et al., 2014; Kuznetsova et al., 2013; R Core Team,
2014).

In models assessing rate of change by year (annualized change) our
explanatory variable was age at Time 1 and the outcome variable was
the difference in rating from Time 2 to Time 1 divided by the time
elapsed between scans. Annualized change measurements were used to
account for the variance in the distance between scan sessions across
participants.

To account for baseline individual differences in reactivity during
regulation trials, we calculated an average reactivity score by taking the
mean rating in the reactivity condition for each participant during each
phase. This average reactivity score was used as a control predictor in
indicated behavioral and structural analyses.

2.9. Structural imaging analyses

We used two complementary analytic methods to assess if and how
changes in brain structure related to changes in regulation of craving

with age. A vertex-wise whole brain general linear model (GLM) ap-
proach located regions of interest (ROIs) most closely associated with
age and regulation of craving. A lasso-based brain-as-predictor ap-
proach (described in section 2.9.3) on ROIs from an automated Free-
surfer atlas was applied to determine which combined neural and be-
havioral factors were most predictive of one’s ability to regulate
craving.

2.9.1. Whole brain surface analyses
We conducted the vertex-based whole-brain cortical surface ana-

lyses in Freesurfer 5.3 using the longitudinal two-step procedure in
mri_glmfit. Surfaces were resampled to a common space (fsaverage) and
smoothed with a 15-mm full-width half maximum kernel. GLMs were
used to test the relationship between cortical thickness, craving, reg-
ulation, and age. Whole-brain analyses were corrected for multiple
comparisons using Monte Carlo simulations with a cluster-forming
threshold of p < .0001, and cluster-wise p=.05 (Hagler et al., 2006).
We controlled for gender in these analyses because we had greater re-
presentation of females in our sample, and because of observed differ-
ences in thickness and maturational timing between males and females
across development (Giedd and Rapoport, 2010; Goddings et al., 2014;
Mutlu et al., 2013). Given the longitudinal design of this study and
surface-based methods used, we believe that we are adequately pow-
ered to detect changes in cortical thickness within subjects given our
sample size (Mills and Tamnes, 2014).

2.9.2. Region of interest analyses
We extracted cortical thickness values from each significant cluster

from the whole-brain regulation of craving GLM. We then ran a series of
multilevel models with linear, quadratic, and cubic age terms to assess
which model best described the shape of change in cortical thickness of
these regions with age.

Because subcortical regions are not included as part of the whole
brain cortical surface analysis in Freesurfer, we also conducted another
multilevel regression analysis assessing the volume of an a priori sub-
cortical region (taken from Freesurfer’s volume-based longitudinal
processing stream) associated with craving reactivity - ventral striatum
- and its relationship with craving, regulation, and BMI. Models with
and without intracranial volume (ICV), whole brain volume (WBV), and
gender are reported in supplemental text (for discussion on using brain
volume proportions or covariates see Mills et al., 2016 and Tamnes
et al., 2017).

2.9.3. Predictive models of age, gender, BMI, and cortical thickness on self-
reported regulation of craving

In this analysis, we used a brain-as-predictor approach (Berkman
and Falk, 2013; Doré et al., 2017; Telzer et al., 2018) to identify which
brain regions and individual difference factors, such as age and gender,
were most important in predicting what an individual’s regulation

Fig. 2. Trial structure for the Regulation of Craving task. 1. On each trial a cue indicated which strategy participants should use when viewing the food stimulus.
Close cue indicates reactivity trials, and Far cue indicates regulation trials. 2. Participants view the stimulus. 3. Participants rate their craving for the food.
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rating would be for each trial in the experiment. The neural measures in
these predictive models consisted of the cortical thickness estimates of
ROIs from the Desikan-Killiany-Tourville (DKT) atlas, an automated,
anatomically-derived cortical parcellation with 31 regions per hemi-
sphere (Desikan et al., 2006; Klein and Tourville, 2012). These atlas
regions were used in order to reduce dimensionality of the neural
measures from 150,000 vertices per hemisphere, and also to maintain
independence from the clusters extracted from the vertex-based GLM
results (Vul et al., 2009). Predictors included the 62 DKT atlas-based
ROIs, age, gender, average reactivity score, and BMI group. The out-
come variable was the self-reported craving rating made by each par-
ticipant after viewing each food image in the regulation condition.

For the first step of this modeling procedure, we used glmnet in R to
run a least absolute shrinkage and selection operator (lasso) regression
(Friedman et al., 2018; Tibshirani, 1996). The lasso performed variable
selection to select predictive ROIs and provided estimates of predictive
accuracy in models of the contribution of age, reactivity score, and
cortical thickness to trial-by-trial regulation ratings. Lasso regression
uses an L1 penalty to reduce multicollinearity among predictors, pre-
vent overfitting, and perform variable selection by shrinking the coef-
ficients toward zero, thus increasing model stability and improving
predictive accuracy. The amount of shrinkage, and thus the number of
variables that are selected to be included in the model, are controlled by
a hyperparameter, lambda. We employed k-fold cross-validation to
determine the optimal lambda which was the one that resulted in the
lowest cross-validated mean squared error (MSE). This method is be-
ginning to gain traction in neuroimaging research, and has been used in
functional imaging studies for voxel selection and in structural imaging
studies to construct a “brain maturation index” of lasso-selected ROIs
(Cao et al., 2015; Chang et al., 2015; Cribben et al., 2012).

For the second step of this procedure, we used lme4 and rsample in
R to compare several multilevel model formulations: the full lasso-de-
rived model with the selected ROIs and individual difference factors; a
reduced behavior-only model that only included age and individual
difference factors identified by the lasso but not ROIs; a brain-only
model that did not include age as a predictor; and a null model that
included no predictors (Kuhn and Wickham, 2017). All models used
regulation rating as the outcome variable. The models were compared
using k-fold cross-validation to determine the model with the lowest
MSE.

3. Results

3.1. Behavioral results

3.1.1. Changes in reactivity and regulation of craving with age
We found that self-reported craving from Time 1 to Time 2 in both

reactivity trials, b = -.04, se= .01, t(47) = -2.75, p= .007, and reg-
ulation trials, b = -0.09, se= .01, t(47) = -5.48, p= 1.08 x 10−6,
decreased with age. When controlling for baseline reactivity, we found
an even stronger effect of age on regulation rating, b= -0.09, se= .01, t
(46) = -6.49, p= 4.21 x 10-9 ; likelihood ratio test between age only
and age plus reactivity model: χ2=46.90, df=1, p= 7.45 x 10-12.
These models showed linear decreases with age with both reactivity
and regulation trials, and quadratic and cubic age terms did not im-
prove model fit. We found a main effect of condition such that parti-
cipants reported less craving in the regulation condition compared to
the reactivity condition b = -.75, se= .09, t(47) = -7.65, p= 7.39 x
10-10. We found a condition by age interaction such that older in-
dividuals reported lower cravings in the regulation condition than the
reactivity conditions compared to those younger in age b = -.05,
se= .01, t(46) = -2.77, p= .007 (Fig. 3).

3.1.2. Rates of change in reactivity and regulation with age
Rate of change from Time 1 to Time 2 did not differ as a function of

age (Fig. 4) suggesting that decreases in craving, and improvements in

regulation ability, changed at a steady rate across the age range: age at
Time 1 predicting annualized change in reactivity b= .007, se= .01; t
(47)= .70, p= .48, age at Time 1 predicting annualized change in
regulation b = -0.01, se= .01, t(47) = -0.83, p= .40. We also did not
find that rate of change differed with age in the regulation condition
when controlling for average reactivity at Time 1, b = -0.01, se= .01; t
(46) = -1.38, p= .17.

3.2. Imaging results

3.2.1. Main effect of reactivity and regulation of craving on cortical
thinning

In the vertex-wise GLM analysis, self-reported craving was not as-
sociated with cortical thinning. In contrast, better regulation of craving
correlated with cortical thinning in the rostral ACC, dmPFC, dlPFC,
vlPFC, inferior parietal lobe, and postcentral gyrus (Fig. 5; Supple-
mental Table 1). When including age as a covariate to assess whether
thickness-regulation associations were age-dependent or age-in-
dependent, no cluster-corrected ROIs remained significant at the whole-
brain level. This suggests that changes in regulation of craving are
highly interrelated with changes in age. Visualization and cluster table
of vertex-wise GLM analysis of the relationship between age and cor-
tical thickness are available in Supplemental Table 2 and Supplemental
Fig. 1.

3.2.2. ROI analysis of longitudinal age-related changes in brain regions
associated with reactivity and regulation of craving

Cortical thickness values of all clusters extracted from the regulation
of craving contrast were all correlated with age (min r = -0.46,
p=1.27 x 10−6, max r = -.68, p=1.99 x 10-14; Fig. 6). Linear growth
trajectories in the relationship between age and thickness were the best
fit for all ROIs: dlPFC: b = -.02, se= .005, t(47) = -5.40, p= 6.15 x
10-7, dmPFC: b = -.02, se= .004, t(47) = -7.32, p= 7.47 x 10-11,
rostral ACC b = -.03, se= .006, t(47) = -5.66, p= 2.67 x 10-7, vlPFC:
b= -.02, se= .004, t(47) = -5.71, p= 1.54 x 10-7. Supplemental Fig. 2
shows visualizations of the relationship between regulation of craving
ratings and cortical thickness in these four ROIs.

3.2.2.1. Ventral striatum volume. VS volumes did not correlate with
craving or regulation of craving. Bilateral VS volumes were modestly
associated with age where increases in age were related to decreases in
VS volume, Left: b = -.04, se= .02, t(47) = -2.24, p= .02, Right b =
-0.04, se= .02, t(47) = -2.04, p= .04 (Fig. 7). A linear trajectory was
the best fit in these models.

3.3. Best-fit models in predicting regulation of craving ability

Individual regulation of craving ratings were best predicted by a
model including age, average reactivity rating, plus the thickness values
of 23 of the 62 available regions. Regions selected from the lasso in-
cluded a number of the regions implicated in regulation of craving
found in the vertex-wise GLM as well as a selection of ROIs distributed
across the entire brain (Supplemental Fig. 3A). Cross-validated MSE
from full, reduced, and null model comparisons indicated that models
with age plus the selected cortical thickness regions while controlling
for average reactivity rating performed best: null model MSE: 1.35, age
only model MSE: 1.28, brain only model MSE: 1.20, age plus brain
model MSE: 1.19 (Supplemental Fig. 3B; note that all models except the
null model include the average reactivity rating as a nuisance re-
gressor). A likelihood ratio test model comparison between the age only
model and brain plus age model converged with the MSE results sug-
gesting that inclusion of measures of cortical thickness are better pre-
dictors of regulation behavior than age alone: χ2=79, df=22, p=
2.36 x 10−8. Likelihood ratio tests also showed that the brain only
model and age plus brain model were statistically different χ2=13.94,
df=1, p= .0001. BMI group and gender did not improve model fit.
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3.4. Effects of body mass index

BMI Group was not related to self-reported craving or its regulation:
reactivity: b = - 0.20, se= .15, t(47) =-1.35, p= .17., regulation: b =
- 0.09, se= .19, t(47)= 4.87, p= .63.

We did find, a small effect such that regardless of age, overweight
and obese individuals had smaller VS volumes compared to healthy and
underweight individuals, Left VS: b = -0.37, se= .13, t(46) = -2.78,
p= .01, Right VS: b = -0.23, se= .11, t(46) = -1.97, p= .05
(Fig. 7B). Additionally, in the sample of individuals with complete BMI
percentile scores (n= 27), we found that heavier individuals with
smaller VS volumes were more likely to gain weight from Time 1 to
Time 2 compared to leaner individuals, Left VS: b = -0.14, se= .08, t
(22) = -1.71, p= .1, Right VS: b = -0.22, se= .05, t(22) = -3.85, p=
.0008.

BMI Group was not associated with cortical thinning in the vertex-
wise analysis, nor did it improve model fit in the lasso-based ROI
analyses predicting regulation of craving. More BMI results can be
found in the supplemental materials.

4. Discussion

This is the first study to investigate longitudinal changes in brain
structures associated with regulation of craving across development.
This work revealed four key findings about how reactivity and reg-
ulation of appetitive cues change with age and relate to neural

structure. First, we showed that both reactivity to appetitive foods and
the ability to regulate that reactivity changed with age. Second, we
found that improved regulation of craving was associated with late
maturing lateral and medial prefrontal cortex thinning. Third, we dis-
covered that predictive models including a combination of age and
cortical thickness measurements distributed throughout the brain best
predicted regulation of craving ratings over simply age alone. Finally,
we determined that lower VS volume was associated with higher BMI
and a greater likelihood of weight gain at Time 2. These findings have
implications for basic and translational research on obesity as well as
reward processing and its regulation across development.

Behaviorally, we found that craving decreased linearly with age.
Regulation of craving abilities improved and also changed linearly with
age, to a greater extent than age-related decreases in craving. While the
extant prior cross-sectional developmental studies of appetitive reg-
ulation did not find stronger improvements in regulation abilities with
age relative to craving (Giuliani and Pfeifer, 2015; Silvers et al., 2014),
this study’s findings do replicate a number of prior studies that showed
age-related improvements in implementation of regulation strategies
while viewing negative emotional pictures (McRae et al., 2012; Silvers
et al., 2016, 2012). Notably, while all these studies varied in the degree
to which reactivity and regulation of affective cues (be they appetitive
or aversive stimuli) changed with age, all found at least modest age-
related decreases in reactivity and all but one (Giuliani and Pfeifer,
2015) found improvements in regulation with age.

Based on prior literature of appetitive behaviors (e.g. Barkley-

Fig. 3. Behavioral results for Regulation of
Craving task. Both reactivity and regulation
ratings decreased with age, with regulation
ratings showing steeper decreases. Each line
joined by two dots represents one participant
and their age at the time of each scan. Lower
ratings= lower craving. Regression line re-
presents fixed effects estimate and grey band
represents the 95% confidence interval.

Fig. 4. Annualized change in reactivity and regulation by age at Time 1. Rate of change in behavior did not. significantly vary by age.
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Levenson et al., 2013; Galvan, 2010; Somerville et al., 2010) we hy-
pothesized that we might find a non-linear peak in reactivity during
adolescence. We did not find this pattern, which may be for a few
reasons: first, in the cross-sectional functional imaging study conducted
in our lab with the Time 1 data (Silvers et al., 2014), we found that
reactivity in this task followed a linear trajectory. The only other study
using a similar food-based appetitive task in a continuous develop-
mental sample of children through adults also observed only linear
changes with age (Giuliani and Pfeifer, 2015). Second, while non-linear
reactivity effects have been demonstrated in other functional imaging
studies of appetitive and/or reward-based behaviors, these effects have
not been consistently observed in those studies’ behavioral results
(Davidow et al., 2018; Rosenbaum and Hartley, 2019). One possible
reason for these inconsistencies is that many of the papers that find
heightened adolescent reward behavior only compare adolescent and
adult samples and exclude child samples (Li, 2017) making it difficult

to determine if behavioral changes are following a linear or non-linear
pattern. Third, in prior literature, appetitive reactivity was measured in
qualitatively different ways in both stimuli type (e.g. happy faces and
money) and rating scales (e.g. binary, continuous scale, or discrete
choices). Appetitive reactivity may look different in different appetitive
domains, and primary rewards such as food cues may not elicit the
same type of response as a happy face. To resolve these discrepancies,
more longitudinal developmental studies on appetitive reactivity and
regulation are needed to determine if the observed differences between
our findings and those of the previously mentioned studies may be at-
tributed to inherent differences between cross-sectional versus long-
itudinal designs, age range differences, variation in task design and
assessment, or type of appetitive stimuli used during the task.

While craving decreased with age, we did not find a relationship
between craving and cortical thinning. Regulation of craving, however,
was associated with cortical thinning in lateral and medial prefrontal

Fig. 5. Main effect of regulation of craving on cortical thinning.
Brain images show clusters where improved regulation ability was
associated with greater thinning. Gender was included as a nui-
sance regressor. Results were corrected for multiple comparisons
by simulation-based clusterwise correction. Cluster statistics
shown in Supplemental Table 1.

Fig. 6. Changes in thinning in regulation of
craving clusters across age. Regression line
represents fixed effects estimate and grey band
represents the 95% confidence interval.
Clusters shown are largest non-repeating clus-
ters found in contrast (2 per hemisphere) and
are left dlPFC, right dmPFC left rostral ACC,
right vlPFC. See Supplementary Table 1 for
complete list of regions and statistics.
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regions associated with emotion regulation and cognitive control
(Buhle et al., 2013; Crone and Steinbeis, 2017). The findings from this
work converge with cross-sectional functional MRI research on craving
and its regulation in both developmental and adult samples (Giuliani
et al., 2014; Giuliani and Pfeifer, 2015; Silvers et al., 2014). The
structural changes in these regions were highly correlated with age
suggesting that associations between thinning and appetitive regulation
are largely age-dependent. This finding is supported by prior work on
brain structure changes across age and its relationship to other cogni-
tive control mechanisms such as inhibition and working memory
(Kharitonova et al., 2013; Tamnes et al., 2013). While we cannot de-
termine whether the relationship between craving regulation and cor-
tical thinning we observed differs from other types of regulation and
cognitive control, we can say that given the lack of a relationship be-
tween craving and cortical thinning, that the brain-behavior relation-
ships in the measures we used differ. Future work could assess the
domain generalness or specificity of multiple types of regulation and
their relationship with developmental changes in brain structure.

From our a priori ROI analysis of VS, we found that older age was
associated with smaller bilateral VS volume which is consistent with
prior studies of subcortical volume changes (Østby et al., 2009;
Raznahan et al., 2014). All structural regions we measured followed a
linear trajectory in the degree to which they changed with age, which is
consistent with other longitudinal structural papers reporting changes
in thickness and volume in children as young as eight years old (Mills
et al., 2014a,2014b; Tamnes et al., 2017). While we did not observe
nonlinear changes in brain structure with age, larger samples and more
than two time points are needed to get the most replicable and reliable
estimates of cortical thickness and volume change patterns (Shaw et al.,
2008).

The lasso-based ROI brain-as-predictor analysis complemented the
whole-brain results by showing the best-fit model in predicting reg-
ulation of craving ratings at each trial. These results determined in a
data-driven way, that neural structure in combination together with age
is a better predictor of behavior than the behavioral results could
supply alone. One interpretation of these results is that inclusion of the
selected neural regions with age formed a richer, more granular index
of maturity than age or other behavioral measures could provide by
themselves. Several frontoparietal regions found in the whole brain
results were selected in the lasso model, however, a range of posterior
and temporal regions contributed to the model as well. This finding
supports the theory that a more distributed network of brain regions
may influence behavior more than standard, highly thresholded uni-
variate GLM approaches can show. A limitation of this approach is that

the ROIs used from the automated atlas were large relative to the
clusters that came out of the whole brain GLM; use of an atlas with
smaller parcellations and a greater number of regions could yield dif-
ferent results. Thus, similar to other predictive imaging methods like
multivoxel pattern analysis, use of the lasso as implemented here may
be more suited for prediction of behavior rather than brain-mapping.
Development of this method could prove to be useful in diagnostics of
normative and non-normative brain development and/or behaviors,
and could work in tandem with approaches using functional imaging
methods to accomplish this goal (e.g. Dosenbach et al., 2010).

Finally, we found that bilateral VS volume was associated with in-
dividual differences in BMI. Heavier individuals had smaller VS vo-
lumes on average. While this pattern has not been consistently found in
VS, a general association of higher BMI and lower brain volume in other
cortical and subcortical regions has been observed in children and
adults (Brain Development Cooperative Group, 2012; Marqués-Iturria
et al., 2013; Raji et al., 2010). We also found that heavier individuals at
Time 1 with smaller VS volumes were more likely to have gained
weight at Time 2. This suggests that low VS volumes could be a specific
neural marker for future weight gain, though, future work would need
to replicate this finding with larger samples, and the causal pattern of
BMI and low VS volume would need to be established. We did not find
an association between VS volume and craving or regulation of craving.
Lack of an association between BMI and self-reported craving and
regulation underscore the limitations of this image-based lab experi-
ment, and suggest a need of future studies to examine links between
real-time food consumption (e.g. an ad libitum task, or food-based
imaging paradigm, i.e. Galván and McGlennen, 2012) and neural
structural properties.

Learning how to manage cravings for food is fundamental for
maintaining health and keeping preventable diseases (e.g. diabetes,
cardiovascular disease) associated with dysregulated eating at bay. This
study showed that craving for high sugar and fattening foods decreased
with age, and the ability to regulate those cravings improved with age.
These behaviors are supported by the maturation of frontoparietal
systems implicated in cognitive control more generally. Future studies
testing brain structure and volume before and after a food regulation
intervention could further elucidate how brain and behavior change
influence each other in the development of more adaptive eating habits.
Regulation approaches such as reappraisal as used in this experiment
could be one such potential intervention method as this study and
others show that this technique can be easily learned and applied at all
ages. With such a large proportion of the population being overweight
or obese, understanding the underlying neural structures supporting the

Fig. 7. Relationship between ventral striatum volumes, age, and BMI group. A. Left (LH) and right (RH) VS volumes showed linear decreases with age. B. Controlling
for age, left and right VS volumes were smaller in overweight and obese individuals in both Time 1 and Time 2.
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drive to eat and to stop oneself from eating seems more important than
ever.
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