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Supplementary Information: 
 

1. Stimuli details and validation. 
Table S1. Details of stimuli used in the experiment. 

  
 
Video stimuli were validated by collecting data on Amazon’s Mechanical Turk platform from a 
sample of self-identified Democrats (N = 369, including 112 leaners) and Republicans (N = 218, 
including 93 leaners) (Total N = 587). Each video was rated on four dimensions: bias, objectivity, 
reasonableness and comprehensibility (i.e. could the content be understood easily). To assess the 
first two dimensions, a version of the Naïve Realism Questionnaire (Pronin et al., 2002) was used 
to assess the extent to which participants felt the videos were biased (3 items, averaged into a Bias 
index) or objective (4 items, averaged into an Objectivity index). The third and fourth dimensions 
were assessed using ratings of reasonableness (1 item) and the extent to which participants 
understood the content (2 items, averaged into a Comprehension index). All analyzed items were 
rated on a 7-point Likert-type scale with the exception of Reasonableness, which was rated on a 
0-100 point scale. Ratings were non-normally distributed.  Therefore, we used a non-parametric 
test to compare our samples (Mann-Whitney U test). 
 
Consistent with analyses in the study, we tested for partisan interpretation of the videos by 
contrasting in-party ratings (i.e., ratings provided by participants whose party identification was 
aligned with the speaker’s partisan orientation) and out-party ratings (i.e., ratings provided by 
participants whose party identification did not align with the speaker’s partisan orientation).  
 
Although all videos should be rated for high levels of comprehensibility (i.e. ease of understanding 
the content), the goal of stimulus validation was to ensure that ratings for the other three 
dimensions differed between conditions as expected. Ratings of objectivity, bias, and 
reasonableness should not differ across control videos, regardless of whether the speaker was a 
Democrat or a Republican, because partisan content was not conveyed. By contrast, videos in the 
two discourse conditions, where speakers expressed partisan views, should seem more objective, 
less biased and more reasonable to participants with similar partisanship (i.e. in-party participants) 
as opposed to seeming less objective, more biased and less reasonable to participants with differing 
partisanship (i.e., out-party participants). 
 
Analysis of M-Turk rating data validated these expectations (for tabular summary of normative 
ratings and statistical comparisons, see Table S2). All videos were judged to be comprehensible 
(median range: 5.5-6.5).  For our Control condition videos, there were no partisan differences in 



the ratings for bias, objectivity, or reasonableness.  In-party participants judged both Identity-
Based Discourse condition videos to be significantly more reasonable, less biased, and more 
objective than out-party participants. In-party participants also judged both Policy-Based 
Discourse condition videos to be significantly more reasonable, less biased, and more objective 
than out-party participants.  
 
In addition, we compared video ratings across conditions (for full comparison between conditions 
and statistics, see Table S3). Compared to control condition videos, participants rated Identity-
Based Discourse condition videos as less reasonable, and less objective.  Participants judged 
Policy-Based Discourse condition videos to be just as reasonable as Control condition videos, but 
also judged them to be both more objective and more influenced by biases. We interpret these 
differences as participants’ recognition that policy positions are influenced by political and 
personal stances, while the video content also reflects a fact-based, data-driven argument. 
 
Finally, participants rated Identity-Based Discourse videos as significantly less reasonable, less 
objective, and more biased than Policy-Based Discourse condition videos. Based on the 
differences within and across conditions, we concluded that videos in both of our discourse 
conditions were capable of activating partisan processing relative to the Control condition.  
Further, differences in reasonableness and objectivity between our Identity-Based Discourse and 
Policy-Based Discourse condition videos provided evidence that participants distinguished 
between the types of stimuli as argument-driven (Policy-Based Discourse condition) and not 
argument-driven (Identity-Based Discourse condition).   



Table S2. Stimulus pre-testing results – all tests are two-sided Mann-Whitney U tests. 

 

 
  



Table S3. Between conditions comparison results – all tests are two-sided Mann-Whitney U tests. 

 

 
 

2. fMRIPrep boilerplate.  
 

Results included in this manuscript come from preprocessing performed 
using fMRIPrep 20.1.0rc3 (Esteban, Blair, et al., 2018; Esteban, Markiewicz, et al., 2018; 
RRID:SCR_016216), which is based on Nipype 1.4.2 (K. Gorgolewski et al., 2011; K. J. 
Gorgolewski et al., 2018; RRID:SCR_002502). 
 
Anatomical data preprocessing 
The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants et al., 2008, 
RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference 
was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow 
(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal 
fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w 
using fast (FSL 5.0.9, RRID:SCR_002823, Zhang et al., 2001). Brain surfaces were reconstructed 
using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale et al., 1999), and the brain mask 
estimated previously was refined with a custom variation of the method to reconcile ANTs-derived 
and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle 
(RRID:SCR_002438, Klein et al., 2017). Volume-based spatial normalization to one standard 
space (MNI152NLin2009cAsym) was performed through nonlinear registration with 



antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w 
template. The following template was selected for spatial normalization: ICBM 152 Nonlinear 
Asymmetrical template version 2009c (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow 
ID: MNI152NLin2009cAsym). 
 
Functional data preprocessing 
For each of the functional runs found per subject (across all tasks and sessions), the following 
preprocessing was performed. First, a reference volume and its skull-stripped version were 
generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to the 
BOLD reference (transformation matrices, and six corresponding rotation and translation 
parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson 
et al., 2002). Susceptibility distortion correction (SDC) was omitted. The BOLD reference was 
then co-registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-
based registration (Greve & Fischl, 2009). Co-registration was configured with six degrees of 
freedom. The BOLD time-series (including slice-timing correction when applied) were resampled 
onto their original, native space by applying the transforms to correct for head-motion. These 
resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just 
preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a 
preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its 
skull-stripped version were generated using a custom methodology of fMRIPrep. Several 
confounding time-series were calculated based on the preprocessed BOLD: framewise 
displacement (FD), DVARS and three region-wise global signals. FD was computed using two 
formulations following Power (absolute sum of relative motions, Power et al., 2014)) and 
Jenkinson (relative root mean square displacement between affines, Jenkinson et al., 2002)). FD 
and DVARS are calculated for each functional run, both using their implementations in Nipype 
(following the definitions by Power et al., 2014). The three global signals are extracted within the 
CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors were 
extracted to allow for component-based noise correction (CompCor, Behzadi et al., 2007). 
Principal components are estimated after high-pass filtering the preprocessed BOLD time-series 
(using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 
(tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the top 
5% variable voxels within a mask covering the subcortical regions. This subcortical mask is 
obtained by heavily eroding the brain mask, which ensures it does not include cortical GM regions. 
For aCompCor, components are calculated within the intersection of the aforementioned mask and 
the union of CSF and WM masks calculated in T1w space, after their projection to the native space 
of each functional run (using the inverse BOLD-to-T1w transformation). Components are also 
calculated separately within the WM and CSF masks. For each CompCor decomposition, the k 
components with the largest singular values are retained, such that the retained components’ time 
series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 
combined, or temporal). The remaining components are dropped from consideration. The head-
motion estimates calculated in the correction step were also placed within the corresponding 
confounds file. The confound time series derived from head motion estimates and global signals 
were expanded with the inclusion of temporal derivatives and quadratic terms for each 
(Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised 
DVARS were annotated as motion outliers. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion transform 



matrices, susceptibility distortion correction when available, and co-registrations to anatomical 
and output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms 
(ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels 
(Lanczos, 1964). Non-gridded (surface) resamplings were performed using mri_vol2surf 
(FreeSurfer).  
Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014, 
RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 
pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 
 

3. Functional localizers comparison.  

Prior literature found that the activation in the Socio-political reasoning localizer task generate a 
brain pattern that looks similar to the mentalizing localizer (False-belief) task (Bruneau & Saxe, 
2010). For visual comparison between the localizers, we ran a second level (group) analysis on the 
results of both functional localizer tasks (Figure S1). The analysis was done as a one sample t-test 
across participants in each of the tasks. Correction for multiple comparisons was done using 
SnPM13 (http://www2.warwick.ac.uk/snpm) voxel-cluster correction, with θ = 0.5 (Hayasaka & 
Nichols, 2004) 

After replicating this observation, we wanted to test whether this result is driven by a shared 
representation in the same voxels or by neighboring but distinct sub-populations at the individual 
level (DiNicola et al., 2020; Scholz et al., 2009). To test that we compared the fROIs picked by 
the two tasks at the individual level. First, we tested the precent of overlapping voxels within each 
region (out of the fixed number of voxels picked. Second, for each successfully picked fROI we 
calcultated the center of mass (in MNI coordinates) and then compared across participants whether 
there was a consistent difference in the center of mass between the loci of both tasks. This was 
done using a paired Hotelling’s T2 test (Hotelling, 1992) which is a multi-dimensional 
generalization of a t-test (Table S4). 

Table S4. Functional localizers comparison at the participant level. 

 

 
  

Region N subs  overlapping voxels % overlap
DMPFC 49 15.71 / 92 17.1% T2 = 6.64 F(3,46)  = 2.12 p = 0.11
LTPJ 52 26.81 / 172 15.6% T2  = 67.07 F(3,49) = 21.48 p << 0.001
MMPFC 51 10.49 / 81 13.0% T2  = 11.92 F(3,48) = 3.81 p = 0.016
PC 52 24.06 / 195 12.3% T2  = 40.06 F(3,49) = 12.83 p << 0.001
RSTS 51 27.8 / 192 14.5% T2 = 21.74 F(3,48) = 6.96 p < 0.001
RTPJ 52 23.48 / 175 13.4% T2  = 97.04 F(3,49) = 31.08 p << 0.001
VMPFC 50 8.1 / 59 13.7% T2  = 9.8 F(3,47) = 3.13 p = 0.034

Hotelling's T2



 

Fig. S1.  Functional localizers comparison at the group-level: Whole-brain analysis (p < 0.05 
corrected). Abbreviations: D/M/VMPFC, dorsal/middle/venttal medial prefrontal cortex; RSTS, 
right superior temporal sulcus; L/RTPJ, left/right temporoparietal junction; PC, precuneus. 
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